2-(p-Sübitüe-Fenil)Oksazolo(4,5-b) Piridin Türevlerinin Streptococcus feacalis ve Staphylococcus aureus’a Karşı Antibakteriyel Etkileri ve Kantitatif Yapı-Etki İlişkileri

İsmail YALÇIN(*)
Esin ŞENER(*)
Seçkin ÖZDEN(*)
Ahmet AKIN(**)
Sulhüye YILDIZ(****)

Özet: Sentezleri daha önce gerçekleştirilen 2-(p-sübitüe-fenil)oksazolo(4,5-b)piridin türevlerinin (I) gram (+) bakterilere karşı etkileri Tüpte Dilüsyon Yöntemi ile belirlenmiştir. S. faecalis ve Staph. aureus’a karşı minimum inhibitör konsantrasyonları (MIK) 25 ve 12,5 μg/ml olarak bulunmuştur.

Bileşiklerin kantitatif yapı etki ilişkileri, bazı hidrofobik (π, π’), elektronik (δ, F, R) ve sterik (MR, MW, P) özellikleri parametreler kullanılarak, Hansch Metodu’ndan yararlanılarak saptanmış ve türevilen korelasyon denklemleri verilmiştir.

Türevlerin, gram (+) bakterilere karşı etkileri ile yapıları arasındaki ilişki incelendiginde, parametrelerin tek başına kullanılmalari yerine hidrofobik, elektronik ve sterik özellikleri kombinasyonlarının daha dikkate değer sonuçlar verdiği saptanmıştır. Elde edilen ideal denklemler verilmiştir.

(*) A.Ü. Eczacılık Fakültesi, Farmasötik Kimya Anabilim Dalı, Tandoğan, ANKARA.
(**) A.Ü. Eczacılık Fakültesi, Mikrobiyoloji Bilim Dalı, Tandoğan, ANKARA.
THE ANTIBACTERIAL ACTIVITY OF 2-(p-SUBSTITUTED-PHENYL) OXAZOLO(4,5-b) PYRIDINE DERIVATIVES AGAINST Streptococcus faecalis AND Staphylococcus aureus AND THE QUANTITATIVE STRUCTURE — ACTIVITY RELATIONSHIPS

Summary: 2-(p-Substituted-phenyl)oxazolo(4,5-b)pyridine derivatives which had been synthesized in our previous work (1), were tested against some gram (+) bacteria using progressive double dilution technique. The minimum inhibitory concentration (MIC) against S. faecalis and Staph. aureus were found 25-12.5 µg/ml.

The quantitative structure-activity relationships (QSAR) of the compounds were studied. Some hydrophobic (π,π'), electronic (δ, F, R) and steric (MR, MW, Pp) physicochemical parameters were used in QSAR studies. The correlation equations of these relationships which were designed according to The Hansch Analysis Method were given.

The correlation of antibacterial activity of oxazolo (4,5-b) pyridines against gram (+) bacteria with hydrophobic, electronic and steric parameters, the combinations of these parameters were found more significant than they were used separately.

Keywords: 2-(p-Substituted-phenyl)oxazolo(4,5-b)pyridines, Streptococcus faecalis, Staphylococcus aureus, π, μ', δ, F, R, MR, MW, Pp, QSAR Studies.

GİRİŞ

Benzoksazol yapısı taşıyan bileşiklerin mikrobiyolojik yönünden aktif oldukları yapılan çalışmalarla bulunmuştur (2-4). Bu çalışmada, benzoksazol halkasının analoğu olan oksazolopirdin yapısının bazı gram (+) bakterileri karşı etkisinin araştırılması planlanmıştır. Oksazol yapısının iki arılı halkası ile donatılmış şekli olan 2-tenilbenzoksazol'de, benzen halkası pirdin ile yer değiştirildiğinde antibakteriyel etkide olabilecek değişikliklerin gözlenmesi düşünülmüştür. Bunun için sentezi daha önce gerçekleştirilinen 2-(p-sübitürefenil)oksazolo (4, 5-b) pirdin türevleri ele alınarak (1), S. faecalis ve Staph. aureus'a karşı mikrobiyolojik etkileri incelenmiştir. Mikrobiyolojik etkileri yönünden ilk defa araştırılan bu bileşiklerin gram (+) bakterileri karşı gösterdikleri aktivite değerleri çeşitli fizikokimyasal özellikler ile karşılaştırılarak kantitatif yapış-etiği ilişkileri bulunmaya çalışılmıştır.

Kantitatif yapış-etiği ilişkilerinin araştırılmasında, Hansch Modeli örnek alınarak yaratalan denklemler arasında en uygun olanının or-
taya çıkarılması düşünülmüştür. Bunun için seçilen hidrofobik, elektronik ve sterik özellikleri fizikokimyasal parametrele, istatistiksel yöntemler uygulanarak elde edilen regresyon denklemleri sonucunda, biyolojik etkiye tanımlayan ideal denkleme ulaşılması planlanmıştır.

GEREÇ VE YÖNTEMLER

Materyal:

Mikrobiyolojik çalışmalarda çözücü olarak susuz etil alkol (Aldrich) kullanılmıştır.

Biyoistatistik çalışmalarda ise korelasyon denklemlerinin hazırlanmasında ve çözümünde IBM-XT Personal Computer'den yararlanılmıştır.

Metod:

Mikrobiyolojik Etkinin Tayini

2-(p-Substitüe-fenil)oksazolo (4,5-b) piridin türevlerinin antibakteriyel etkilerinin sapтанmasında Tüpte Dilüsyon Yönteminden yararlanılmıştır. Gram (+) bakteriler olarak ise aşağıdaki mikroorganizmalar seçilmiştir:

1) Staphylococcus aureus
 ATCC 6538
2) Streptococcus faecalis
 ATCC 10541

Mikrobiyolojik etki tayininde, belirtilen bakteriler için «Mueller Hinton Broth» besiyeri, distile su içinde ıstılarak eritildikten sonra pH: 7.4'e ayarlandı-Hazırlanan be

siyeri steril tüplere 5 er ml taksim edildikten sonra 121°C de 15 dakika otoklavda sterilize edildi.

Antibakteriyel aktiviteleri incelenmek olan bileşiklerin susuz etil alkoldeki steril çözeltilerinden, her bakteri için hazırlanmış serinin ilk tüpfüne 400 μ g/ml olarak şekilde ilave edilip, tupten tüpe aktarılarda 10 dilüsyon (400, 200, 100, 50, 25, 12.5, 6.2, 3.1, 1.5, 0.7 μg/ml) hazırlantı. Son iki tüp besiyeri ve kontrol tüpleri olarak ayrıldı. Yuvarlarda belirlenmiş olan bakteriler «Nutrient Broth» besiyerine ekilecek 37°C'de 24 saat süreyle inkübe edildi. Sürenin sonunda 1/100 oranında sulandırıldı.

Bu şekilde hazırlanmış olan mikroorganizma süspansiyonlarıdan besiyeri kontrol tüpleri hariç bütün tüplere 0.2 ml ilave edildi. İyice karıştırılan bakteriler için 37°C de 24 saat inkübasıona bırakıldı. Sürenin sonunda besiyeri ve kontrol tüpleri incelendi. Besiyer kontrol tüplerinde üremenin buluşmaması, bakteri kontrol tüplerinde ise üremenin mevcud olmasına halinde, numunelerin Minimal İnhibisyon Konsantrasyonları (MIK) belirlendi. (Tablo 1)

Mikrobiyolojik etkinin araştırıldığı bileşiklerde, aktivitenin numune çözeltilerinin hazırlanmasında kullanılan etil alkol denleri gelmediğin ispati için, çözücünün aynı oranlarda dilüsyonları hazırlanmıştır. Bu dilüsyonlardaki etil alkol çözeltilerinin hiçbirinin antibakteriyel aktivite göstermediği de

neyesel olarak belirlenmiştir.
Tablo 1: Bileşiklerin Antibakteriyel Etkilerin Mick (µg/ml) Değerleri. A: Amoksisin B: Ampisilin

<table>
<thead>
<tr>
<th>R</th>
<th>Staph. aureus</th>
<th>S. faecalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>C₂H₅</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>C(CH₃)₃</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>OCH₃</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>OC₂H₅</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>NH₂</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>NO₂</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Cl</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Br</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>A</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>B</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Araştırılan mikroorganizmaları karşı, standart ilaç olarak Amoksisin ve Ampisilin seçilecek, aynı yöntem ve şartlarda gösterdikleri MİK değerleri bulunmuştur.

Fizikokimyasal Parametrelerin Tespiti:
Kullanılan parametrelerden π (pi), π² (pi kare), δ (sigma), F (alan etkisi), R (rezonans etkisi), MR (molar refraktivite) ve MW (moleküler ağırlık), Hansch ve ark.ın hazırladığı tablodan yararlanarak bulunmuştur (5). Sentezленen bileşiklerin Parachor (Pₜ) değerleri ise Quayle'nin verdiği tablodan hesaplanmıştır (6). Tüm verilerin bulunmaktadır fizikokimyasal parametre değerleri Tablo 2 de verilmiştir.
Tablo 2: 2-(p-Sübstitüfenil) oksazolo (4, 5-b) plridin Türevlerinin Bulunan Fizikokimyasal Parametre Değerleri.

<table>
<thead>
<tr>
<th>R</th>
<th>πr</th>
<th>πc</th>
<th>δ</th>
<th>F</th>
<th>hR</th>
<th>cr</th>
<th>Kx</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl2</td>
<td>0.56</td>
<td>0.3130</td>
<td>-0.17</td>
<td>-0.04</td>
<td>-0.13</td>
<td>2.03</td>
<td>15</td>
<td>4.12</td>
</tr>
<tr>
<td>ZnCl2</td>
<td>1.00</td>
<td>1.0064</td>
<td>-0.15</td>
<td>-0.09</td>
<td>-0.10</td>
<td>1.50</td>
<td>2.11</td>
<td>4.12</td>
</tr>
<tr>
<td>C(SO3H)2</td>
<td>1.90</td>
<td>3.9239</td>
<td>-0.02</td>
<td>-0.07</td>
<td>-0.13</td>
<td>1.82</td>
<td>5.71</td>
<td>534.2</td>
</tr>
<tr>
<td>SiH4</td>
<td>0.02</td>
<td>0.0004</td>
<td>-0.27</td>
<td>0.26</td>
<td>-0.51</td>
<td>7.07</td>
<td>51</td>
<td>443.4</td>
</tr>
<tr>
<td>OC2Cl2</td>
<td>0.33</td>
<td>0.1444</td>
<td>-0.24</td>
<td>0.22</td>
<td>-0.44</td>
<td>12.47</td>
<td>45.1</td>
<td>424.7</td>
</tr>
<tr>
<td>Ni2</td>
<td>0.23</td>
<td>1.5223</td>
<td>-0.06</td>
<td>0.02</td>
<td>-0.66</td>
<td>5.42</td>
<td>16</td>
<td>403.8</td>
</tr>
<tr>
<td>NO2</td>
<td>0.28</td>
<td>0.5754</td>
<td>0.27</td>
<td>0.67</td>
<td>0.16</td>
<td>7.30</td>
<td>46</td>
<td>417.0</td>
</tr>
<tr>
<td>Cl</td>
<td>0.71</td>
<td>0.5041</td>
<td>0.23</td>
<td>0.41</td>
<td>-0.15</td>
<td>6.03</td>
<td>55.4</td>
<td>415.3</td>
</tr>
<tr>
<td>Br</td>
<td>0.66</td>
<td>0.7396</td>
<td>0.23</td>
<td>0.44</td>
<td>-0.17</td>
<td>8.00</td>
<td>75.9</td>
<td>426.7</td>
</tr>
</tbody>
</table>

Tablo 3: 2-(p-Sübstitüfenil) oksazolo (4,5-b) plridin Türevlerinin Gram (+) Bakteriler için Türetilen Ideal DENKLEMLER. (C, bileşiklerin MİK değerlerinin molar konsantrasyonu. Regresyon denklemlerindeki parentezlerin içerisindeki sayılar, regresyon katsaylarının standart hatalarını göstermektedir. n, bileşik sayısıdır. R², çoklu korelasyon katsayısının karesidir. s, standart eğimdir. F, F testini, P ise F testinin olasılığını göstermektedir.)

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>DENKLEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph. aureus</td>
<td>log 1/C : -0.029 (+0.0331)R² - 0.1032 (+0.025)R - 0.0147 (+0.01)MR + 0.0078 (+0.0018)Mr + 3.62</td>
</tr>
<tr>
<td>S. faecalis</td>
<td>log 1/C : 0.3136 (+0.0052)R² - 0.488 (+0.0039)R + 1.2001 (+1.4962)R - 94.3996 (+1.5248)R - 101.923</td>
</tr>
</tbody>
</table>

Korrelasyon Denklemlerinin Hesaplanması:

Bileşiklerin yapıştaki çalışmalarda kullanılan çoklu regresyon denklemleri Microstat İstatisistik Programı Disketleri kullanarak IBM-XT Personal Computer ile hesaplanmıştır.

SONUC VE TARTIŞMA

Sentezleri daha önce gerçekleştirdik (1) 9 adet oksazolopiridin türevinin ilk defa bazı gram (+) bakterilere karşı antibakteriyel etkileri Tüpte Dilüsyon Yöntemi ile saptanmıştır. Bileşiklerin difüzyonunu etkileyen çeşitli faktörlerin...
Tablo 4: 2-(p-Sübitstüfeenil) oksazolo (4,5-b) piridin türevlerinin Staph. aureus için türetilen regresyon denklemleri.

Tablo 4: 2-(p-Sübitstüfeenil) oksazolo (4,5-b) piridin türevlerinin Staph. aureus için türetilen regresyon denklemleri.

Tablo 4: 2-(p-Sübitstüfeenil) oksazolo (4,5-b) piridin türevlerinin Staph. aureus için türetilen regresyon denklemleri.

varlığı düşünülerek ve özellikle yeni sentezlenen maddeler için daha güvenilir sonuçlar verdiği için bu yöntem seçilmiştir (7, 8).

Tablo 1 de verilen MIK değerleri incelendiğinde, Staph. aureus ve S. faecalis’e karşı bileşiklerin etkilerinin, para konumunda bulunan alkol ve alkolsu gruplarında ki karbon sayısının artması ile yükseldiği görülmektedir.

Biyoistatistik analizler, Microstat Paket Programı aracılığı ile IBM-XT Personal Computer ile yapılmıştır. Sonuçta, 2-(p-Sübitstüfeenil) oksazolo (4,5-b) piridin türevleri ile Staph. aureus ve S. faecalis arasındaki kantitatif yapıcı-etiği ilişkilerini en iyi gösteren denklemler Tablo 3 de verilmiştir. Yapı-etiği arasındaki kantitatif ilişkiyi veren bu denklemleri basitleştirme amacına ileri ve geri başarımaları şeklinde eliminasyon çalışmaları yapılmıştır (9) (Tablo 4 ve
<table>
<thead>
<tr>
<th>Denk. No</th>
<th>Denklemler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\log 1/C : 0.12 (\pm 0.05) R^2 + 4.48$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.4185, \ a: 0.13, \ F: 3.0$</td>
</tr>
<tr>
<td>2</td>
<td>$\log 1/C : 0.09 (\pm 0.06) R^2 + 4.0$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.4552, \ a: 0.14, \ F: 2.5$</td>
</tr>
<tr>
<td>3</td>
<td>$\log 1/C : 0.11 (\pm 0.07) R^2 + 0.02 (\pm 0.06) R^2 - 0.07 (\pm 0.14) R^2 + 4.48$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.4211, \ a: 0.15, \ F: 1.32$</td>
</tr>
<tr>
<td>4</td>
<td>$\log 1/C : 0.12 (\pm 0.09) R + 0.06 (\pm 0.05) R^2 - 0.12 (\pm 0.58) R + 4.48$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.4643, \ a: 0.16, \ F: 0.94$</td>
</tr>
<tr>
<td>5</td>
<td>$\log 1/C : 0.06 (\pm 0.02) R + 0.02 (\pm 0.02) R^2 - 14.11 (\pm 33.02) R^2 + 13.02$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.5122, \ a: 0.18, \ F: 0.62$</td>
</tr>
<tr>
<td>6</td>
<td>$\log 1/C : -0.02 (\pm 0.01) R^2 + 0.06 (\pm 0.06) R^2 - 2.56 (\pm 3.07) R^2 + 2.21$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.6667, \ a: 0.13, \ F: 1.44$</td>
</tr>
<tr>
<td>7</td>
<td>$\log 1/C : 0.32 (\pm 0.06) R^2 + 0.12 (\pm 0.11) R^2 + 10.72 (\pm 0.42) R^2 - 3.44$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 1.0000, \ a: 0.002, \ F: 50.64$</td>
</tr>
<tr>
<td>8</td>
<td>$\log 1/C : -0.61 (\pm 0.01) R + 0.16 (\pm 0.13) R^2 - 14.7 (\pm 5.2) R - 13.92$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.6883, \ a: 0.11, \ F: 2.05$</td>
</tr>
<tr>
<td>9</td>
<td>$\log 1/C : 0.03 (\pm 0.01) R - 0.03 (\pm 0.06) R + 0.24 (\pm 0.14) R - 7.53$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.7664, \ a: 0.12, \ F: 2.36$</td>
</tr>
<tr>
<td>10</td>
<td>$\log 1/C : 0.03 (\pm 0.06) R + 0.03 (\pm 0.05) R^2 + 0.07 (\pm 0.16) R - 2.79$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.7778, \ a: 0.11, \ F: 3.50$</td>
</tr>
<tr>
<td>11</td>
<td>$\log 1/C : 0.001 (\pm 0.05) R + 0.004 (\pm 0.04) R^2 + 0.05 (\pm 0.12) R - 2.75$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.7721, \ a: 0.1, \ F: 5.05$</td>
</tr>
<tr>
<td>12</td>
<td>$\log 1/C : 0.002 (\pm 0.04) R + 0.01 (\pm 0.04) R^2 + 2.97$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.7677, \ a: 0.09, \ F: 9.51$</td>
</tr>
<tr>
<td>13</td>
<td>$\log 1/C : 0.003 (\pm 0.003) R + 2.97$</td>
</tr>
<tr>
<td></td>
<td>$n: 9, \ R^2: 0.7642, \ a: 0.16, \ F: 22.09$</td>
</tr>
</tbody>
</table>

Tablo 5: 2-(p-Sübstitüfenil) oksazol (4,5-b) pirdin Türevlerinin S. faecalis için Türetilen Regresyon Denklemleri.

5). Fakat Tablo 4 ve 5 incelendiğinde yapı ile etki arasındaki en uygun korelsyonu sağlayan denklemlerin Tablo 3'de verilenler olduğu görülürmektedir.

Tablo 3 incelendiğinde ise, istatistiksel analiz çalışmalarının sonucunda, oksazolpiridin türevlerinin antibakteriyel etkilerinin bu bileşiklerin hidrofobik, elektronik ve sterik özelliklerini içeren kombinasyonlarının fonksiyonu olduğu
<table>
<thead>
<tr>
<th>Bil. No</th>
<th>Staph. aureus</th>
<th></th>
<th>S. faecalis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulunan</td>
<td>Hesaplanan</td>
<td>Fark</td>
<td>Bulunan</td>
</tr>
<tr>
<td>1</td>
<td>3.93</td>
<td>3.96</td>
<td>0.07</td>
<td>3.93</td>
</tr>
<tr>
<td>2</td>
<td>3.99</td>
<td>4.02</td>
<td>-0.07</td>
<td>4.25</td>
</tr>
<tr>
<td>3</td>
<td>4.31</td>
<td>4.30</td>
<td>0.01</td>
<td>4.31</td>
</tr>
<tr>
<td>4</td>
<td>3.96</td>
<td>4.05</td>
<td>-0.09</td>
<td>3.96</td>
</tr>
<tr>
<td>5</td>
<td>4.28</td>
<td>4.22</td>
<td>0.06</td>
<td>4.28</td>
</tr>
<tr>
<td>6</td>
<td>3.93</td>
<td>3.92</td>
<td>0.01</td>
<td>3.93</td>
</tr>
<tr>
<td>7</td>
<td>3.98</td>
<td>3.98</td>
<td>0.00</td>
<td>3.98</td>
</tr>
<tr>
<td>8</td>
<td>3.97</td>
<td>3.96</td>
<td>0.01</td>
<td>3.97</td>
</tr>
<tr>
<td>9</td>
<td>4.34</td>
<td>4.34</td>
<td>0.00</td>
<td>4.04</td>
</tr>
</tbody>
</table>

Tablo 6: 2-(p-Sübitstitüfenil) oksazolo (4, 5-b) prirdin Türevlerinin Bulunan ve Hesaplanan log 1/C Değerleri.

görülmektedir. Fizikokimyasal parametreler tek tek kullanıldığında aktivite ile anlamlı korelasyonlar vermemektedirler.

Kullanılan fizikokimyasal parametreler arasında bileşiklerin, Staph. aureus'a karşı gösterdikleri etkide hidrofobik parametre (π), elektronik parametre (δ) ve sterik parametreler olarak MR ve MW değerleri rol oynamaktadırlar. S. faecalis'e karşı ise hidrofobik olarak π, τ^2, elektronik olarak δ, F, R, ve sterik olarak MR ve P_r değerlerinin etki için önemli olduğu bulunmuştur. Bu fizikokimyasal parametreleri içeren Tablo 3' de ki denklemler aracılığı ile bileşiklerin log 1/C değerleri hesaplandığında, deneySEL olarak bulunan log 1/C değerleri ile arasındaki farkın çok az olduğu Tablo 6'da gösterilmektedir.

LITERATÜR

4) Özden, S., Özden, T., Şener, E., Yalçın, İ., Akın, A., Yıldız, S.,:

