SYNTHESIS OF NOVEL PYRAZOLO[5,1-b][1,3]BENZOTHIAZOLES: A NEW PERICYCLIC PATHWAY

Betül Tekiner-Gulbas,¹ László Filák,¹ Gyöngyvér Ágnes Vaskó,¹ Orsolya Egyed,¹ Ismail Yalçin,² Esin Aki-Sener,² Zsuzsanna Riedl,¹ and György Hajós*¹

¹Chemical Research Center, Hungarian Academy of Sciences, H-1025 Budapest, Pusztaszeri út 59, Hungary. ²Ankara University, Faculty of Pharmacy, TR-06100 Tandogan, Ankara, Turkey. E-mail: ghajos@chemres.hu

Abstract — 2-Benzylbenzothiazoles were easily N-aminated by tosyl hydroxylamine, and the obtained N-amino salts were reacted with ethyl orthoformate to give new derivatives of the pyrazolo[5,1-b][1,3]benzothiazole ring system. Mechanistic considerations suggest that the ring closure reaction proceeds via deprotonation of the N-amino salt followed by electrocyclization to provide the tricyclic ring system. The procedure opens an easy access to variously substituted derivatives of the target ring system.

INTRODUCTION

Benzothiazoles and related compounds have recently been proved to be of high interest from the viewpoint of pharmaceutical applications and, hence, novel functionalization and extension of our activity in this area seemed important. A particularly straightforward way of structural modification of azoles can be the N-amination of the ring-nitrogen atom, by which a new functional group (i.e. an NH₂ moiety) is introduced into the heterocycle allowing new derivatizations and/or ring closures.
The literature survey in this respect indicated that very limited work on N-amination of benzothiazoles has been published. Three decades ago Koga et al.7 reported that reaction of 2-methylbenzothiazole (1) with mesityl hydroxylamine gave rise to the N-amino mesitylanesulfonate salt (2) which compound was treated with acetic anhydride to result in formation of 2-methyl-3-acetylpyrazolo[5,1-b]benzothiazole (3) in low yield. Other derivatives of this ring system have also been synthesized by different methods.8 More recently, another N-amination reaction of benzothiazoles has also been reported.9

RESULTS AND DISCUSSION

We are now reporting a new generally extendable ring closure reaction to pyrazolobenzothiazoles starting from N-amino-2-benzylbenzothiazoles (5a-f) which can easily be prepared by reaction of the appropriate 2-benzylbenzothiazoles (4) with O-tosylhydroxylamine10 (TSH) in high yields.

Although the above cited references provide evidence for N-amination of the benzothiazole ring, amination of ring-sulfur atoms can not be excluded as such transformations with other sulfur heterocycles have also been reported.11 In order to find experimental support for the supposed N-amination, 15N chemical shifts were determined by 15N-1H HMQC measurements, based on direct N-H coupling (NH\textsubscript{2}) or on multiple bond couplings (N3). The observed shifts (-194.0 ppm for ring N and -314.0 ppm for amine-N) are in good agreement with data observed for some related N-amino salts (\textit{i.e. N-aminoisoquinolinium compounds,}12 -211.2 ppm for ring N and -306.0 ppm for amine-N).

We have found that variously substituted N-amino salts (5) when reacted with triethyl orthoformate under reflux conditions can be transformed to novel pyrazolo[5,1-b][1,3]benzothiazoles by one simple manipulation step in medium to good yields.
As to the mechanism of this cyclization the following sequence of reaction steps leading to formation of the tricyclic pyrazoles can be proposed (Figure 1)

The first step is obviously a condensation reaction between the starting N-amino salt (5) and the triethyl orthoformate reagent to give an iminoether-containing intermediate (a) followed by a deprotonation to afford the neutral species (b). In this intermediate an electrocyclization can take place (arrows) with participation of a C=N and C=C double bond as well as by the lone pair of the ring-nitrogen atom. This valence bond isomerization leads to the zwitterionic third intermediate (c) which can easily undergo ethanol elimination to give the stable heteroaromatic final product (6). In one case (i.e. with 5f) the deprotonated conjugate base (7) was also isolated and it was reacted with the ortho ester to yield the fused pyrazole (6f).

CONCLUSION

These results convincingly show that a new and effective cyclization pathway to fused benzothiazoles has been found by which a series of novel derivatives – with particular interest to introduction of reactive
groups – can be prepared. From theoretical viewpoint, the pericyclic nature of the ring closure step is of theoretical importance. Extension of this ring closure methodology for novel related cases as well as biological test of the new derivatives is in progress.

EXPERIMENTAL

Melting points were determined by a Büchi apparatus and are uncorrected. The IR spectra were recorded on a Thermo Nicolet Avatar 320 FT-IR spectrometer. NMR experiments were performed on Varian INOVA-200 or Varian INOVA-400 spectrometers, \(^1\)H and \(^{13}\)C chemical shifts are expressed in ppm (\(\delta\)). The elemental analysis has been carried out with an Elementar Vario EL III apparatus. The starting benzylbenzothiazoles (4) were synthesized according to literature procedures.\(^{13}\)

General Procedure for N-amination of 2-benzylbenzothiazoles.

To a solution of 2-benzylbenzothiazoles (4a-f, 1 mmol) in CH\(_2\)Cl\(_2\) (5 mL), a solution of TSH reagent (1.5 mmol) in CH\(_2\)Cl\(_2\) (10 mL) was added at 0°C. The reaction mixture was stirred at rt for 2 h. The deposited white crystals were filtered off and recrystallized from MeCN-Et\(_2\)O mixture.

3-Amino-2-benzyl-1,3-benzothiazol-3-ium 4-methylbenzenesulfonate (5a)

Starting from 4a (0.225 g), white crystals (0.390 g, 95%), mp 157-158°C; IR (KBr): 3217, 3116, 2926, 1497, 1437, 1221, 1180, 1034, 1012, 764, 685 cm\(^{-1}\); \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\): 8.3 (dd, \(J=8.7, 1.1\) Hz, 1H, H7), 8.0 (dd, \(J=8.1, 1\) Hz, 1H, H4), 7.8 (m 1H, H5), 7.7 m, 1H, H6), 7.4 (m, 5H, H-phenyl), 7.3 (br. s, 2H, H-NH\(_2\)), 7.6 (m, 2H, H2 + H6 (anion)), 7.0 (m, 2H, H3 + H5 (anion)), 4.9 (s, 2H, CH\(_2\)), 2.3 (s, 3H, CH\(_3\) (anion)); \(^{13}\)C NMR (DMSO-d\(_6\)) \(\delta\): 178.7, 142.4, 141.2, 138.3, 132.1, 129.2 (2C), 128.5 (2C), 128.4, 127.9, 127.5 (2C), 126.2, 124.7 (2C), 122.6, 116.3, 35.5, 20.3; Anal. Calcd for C\(_{31}\)H\(_{27}\)N\(_2\)O\(_3\)S\(_2\) (412.53): C, 61.14; H, 4.89; N, 6.79; S, 15.55. Found: C, 60.97; H, 4.84; N, 6.70; S, 15.60.

3-Amino-2-(4-methylbenzyl)-1,3-benzothiazol-3-ium 4-methylbenzenesulfonate (5b)

Starting from 4b (0.240 g), white crystals (0.390 g, 96%), mp 157-158°C; IR (KBr): 3217, 3116, 2926, 1497, 1437, 1221, 1180, 1034, 1012, 764, 685 cm\(^{-1}\); \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\): 8.3 (dd, \(J=8.7, 1.1\) Hz, 1H, H7), 8.2 (d, \(J=8\) Hz, 1H, H4), 7.8 (m 1H, H5), 7.7 (m, 1H, H6), 7.5 (m, 2H, H2 + H6 (anion)), 7.4 (br. s, 2H, H-NH\(_2\)), 7.3 (m, 4H, H-tolyl), 7.0 (m, 2H, H3 + H5 (anion)), 4.8 (s, 2H, CH\(_2\)), 2.4 (s, 3H, H-CH\(_3\)-tolyl), 2.3 (s, 3H, CH\(_3\) (anion)); \(^{13}\)C NMR (DMSO-d\(_6\)) \(\delta\): 178.7, 145.6, 141.3, 137.8, 137.5, 130.6, 129.7 (4C), 129.2, 128.3, 127.8 (2C), 127.1, 125.4 (2C), 124.5, 116.5, 35.0, 20.7, 19.8; Anal. Calcd for C\(_{22}\)H\(_{20}\)N\(_2\)O\(_3\)S\(_2\) (412.53): C, 61.14; H, 4.89; N, 6.79; S, 15.55. Found: C, 60.97; H, 4.84; N, 6.70; S, 15.60.

3-Amino-2-(4-bromobenzyl)-1,3-benzothiazol-3-ium 4-methylbenzenesulfonate (5c)

Starting from 4c (0.3 g), white crystals (0.340 g, 69%); mp 165°C; IR (KBr): 3260, 3137, 2915, 1489,
1462, 1220, 1193, 1124, 1012, 772, 682 cm⁻¹; ¹H NMR (CDCl₃+DMSO-d₆) δ: 8.3 (d, J = 8.7 Hz, 1H, H7), 8.1 (d, J = 8.1, 1H, H4), 7.8 (m, 1H, H5), 7.7 (m, 1H, H6), 7.5 (m, 4H, H-bromophenyl), 7.4 (br. s, 2H, H-NH₂), 7.4 (m, 2H, H₂ + H6 (anion)), 7.10 (m, 2H, H₃ + H₅ (anion)), 4.9 (s, 2H, CH₂), 2.37 (s, 3H, CH₃ (anion)); ¹³C NMR (CDCl₃+DMSO-d₆) δ: 178.3, 142.6, 141.3, 138.2, 131.6 (2C), 131.4, 131.2 (2C), 128.5, 127.6 (C6), 127.5 (2C), 126.2, 124.7 (2C), 122.6, 122.0, 116.4, 34.9, 20.3; Anal. Calcd for C₂₁H₁₉BrN₂O₃S₂ (491.42): C, 51.33; H, 3.90; N, 5.70; S, 13.05. Found: C, 51.33; H, 3.90; N, 5.68; S, 13.17.

3-Amino-2-(4-chlorobenzyl)-1,3-benzothiazol-3-ium 4-methylbenzenesulfonate (5d)
Starting from 4d (0.260 g), white crystals (0.410 g, 92%); mp 159-160 °C; IR (KBr): 3170, 3070, 2914, 1493, 1463, 1220, 1177, 1034, 1011, 770, 681 cm⁻¹; ¹H NMR (DMSO-d₆) δ: 8.31 (dd, J = 8.7, 1.1 Hz, 1H, H7), 8.23 (dd, J = 8.1, 1.0 Hz, 1H, H4), 7.89 (dd, J = 8.1, 7.3, 1.1 Hz, 1H, H5), 7.72 (ddd, J = 8.7, 7.3, 1.0 Hz, 1H, H6), 7.54 (m, 4H, H-chlorophenyl), 7.47 (br. s, 2H, H-NH₂), 7.42 (m, 2H, H₂ + H6 (anion)), 7.10 (m, 2H, H₃ + H₅ (anion)), 4.85 (s, 2H, CH₂), 2.25 (s, 3H, CH₃ (anion)); ¹³C NMR (DMSO-d₆) δ: 178.0 (C2), 142.6 (C1' (anion)), 141.0 (C3a), 137.7 (C4' (anion)), 133.8 (C4'), 133.5 (C1'), 130.6 (C3' + C5'), 128.4 (C3 + C5 (anion)), 128.0 (C5), 127.2 (C6), 127.1 (C2 + C6 (anion)), 126.0 (C7a), 124.4 (C2' + C6'), 122.6 (C7), 116.1 (C4), 34.5 (CH₂), 20.1 (CH₃(anion)); ¹⁵N NMR δ: -194.0 (N3), -314.0 (NH₂); Anal. Calcd for C₂₁H₁₉ClN₂O₃S₂ (446.97): C, 56.43; H, 4.28; N, 6.27; S, 14.35. Found: C, 56.21; H, 4.32; N, 6.34; S, 14.08.

3-Amino-2-(4-fluorobenzyl)-1,3-benzothiazol-3-ium 4-methylbenzenesulfonate (5e)
Starting from 4e (0.240 g), white crystals (0.370 g, 87%); mp 150-151 °C; IR (KBr): 3173, 3072, 2913, 1512, 1463, 1220, 1177, 1033, 1011, 770, 682 cm⁻¹; ¹H NMR (CDCl₃+DMSO-d₆) δ: 8.25 (d, J = 8.5, 1H, H7), 8.11 (d, J = 8.0 Hz, 1H, H4), 7.78 (m, 1H, H5), 7.7 (m, 1H, H6), 7.5 (m, 4H, H-fluorophenyl+ H₂ + H₆ (anion)), 7.45 (br. s, 2H, H-NH₂), 7.1 (m, 4H, H-fluorophenyl+ H₂ + H₆ (anion)), 4.9 (s, 2H, CH₂), 2.28 (s, 3H, CH₃ (anion)); ¹³C NMR (CDCl₃+DMSO-d₆) δ: 178.6, 162.1 (d, 1JC,F = 249 Hz), 143.7, 141.5, 138.1, 131.6 (2C, d, 3JC,F = 8 Hz), 128.9, 128.7 (d, 4JC,F = 3.5 Hz), 128.0, 127.8 (2C), 126.7, 125.1 (2C), 123.5, 116.5, 115.7 (2C, d, 2JC,F = 21.5 Hz), 34.8, 20.6; Anal. Calcd for C₂₁H₁₉FN₂O₃S₂ (430.52): C, 58.59; H, 4.45; N, 6.51; S, 14.90. Found: C, 58.24; H, 4.63; N, 6.68; S, 15.10.

3-Amino-2-(4-nitrobenzyl)benzothiazol-3-ium 4-methylbenzenesulfonate (5f)
Starting from 4f (0.270g), yellow crystals (0.370 g, 81%); mp 172-173 °C; IR (KBr): 3300, 3120, 2915, 1521, 1352, 1220, 1170, 1032, 1010, 772, 681 cm⁻¹; ¹H NMR (CDCl₃+DMSO-d₆) δ: 8.3 (d, J = 8.5 Hz, 1H, H7), 8.25 (m, 2H, H-nitrophenyl), 8.2 (d, J = 8.0 Hz, 1H, H4), 7.8 (m, 2H, H-nitrophenyl), 7.8 (m, 1H, H5), 7.7 (m, 1H, H6), 7.5 (br. s, 2H, H-NH₂), 7.49 (m, 2H, H₂ + H₆ (anion)), 7.0 (m, 2H, H₃ + H₅
(anion)), 4.11 (s, 2H, CH2), 2.28 (s, 3H, CH3 (anion)); 13C NMR (CDCl3+DMSO-d6) δ: 178.3, 147.3, 143.9, 141.2, 140.5, 138.0, 131.0 (2C), 129.0, 128.1, 127.8 (2C), 126.8 (2C), 125.1 (2C), 123.8, 123.7, 116.5, 35.0, 20.6; Anal. Calcd for C21H19N3O5S2 (457.52): C, 55.13; H, 4.19; N, 9.18; S, 14.02. Found: C, 55.01; H, 4.30; N, 9.00; S, 14.19.

General procedure for ring closure of 3-amino-2-benzylbenzothiazolium salts to pyrazolo[5,1-b][1,3]benzothiazoles.

A suspension of 3-aminobenzothiazolium salts (5a-f, 1 mmol) in triethyl orthoformate (5 mL) was heated to 120 °C (oil bath temperature) and stirred for 4h. The obtained dark brown solution was evaporated to dryness in vacuo, and the residue was suspended in water (10 mL). This suspension was neutralized by conc. NH4OH and extracted with CH2Cl2 (3x15 mL). The combined organic phase was dried (Na2SO4) and evaporated, the residue was treated with methanol (5 mL) and the precipitated product was filtered off and crystallized from MeCN.

3-Phenylpyrazolo[5,1-b][1,3]benzothiazole (6a)
Starting from 5a (0.410 g), beige crystals (0.082 g, 33%); mp 139-140 °C; IR (KBr): 3025, 1603, 1550, 1471, 1400, 1377, 748, 740 cm⁻¹; ¹H NMR (CDCl3) δ: 8.2 (s, 1H, H2), 8.0 (d, J = 8.0, 1H, H8), 7.7 (d, J = 8.0 Hz, 1H, H5) 7.6-7.2 (m, 7H, H-phenyl, H6,7); ¹³C NMR (CDCl3) δ: 141.6, 134.7, 134.0, 131.5, 130.0, 129.0 (2C), 126.6, 126.2, 124.9 (2C), 124.8, 124.0, 116.5, 35.0, 20.6; Anal. Calcd for C17H13N3O5S (250.32): C, 71.97; H, 4.03; N, 11.19; S, 12.81. Found: C, 71.55; H, 3.91; N, 10.98; S, 12.72.

3-(4-Methylphenyl)pyrazolo[5,1-b][1,3]benzothiazole (6b)
Starting from 5b (0.430 g), beige crystals (0.180 g, 68%); mp 149-150 °C; IR (KBr): 3020, 2913, 2854, 1556, 1473, 1460, 1373, 808, 743 cm⁻¹; ¹H NMR (CDCl3) δ: 8.17 (s, 1H, H2), 8.0 (dd, J = 8.1, 1.1 Hz, 1H, H8), 7.72 (dd, J = 8.0, 1.1 Hz, 1H, H5), 7.52 (dd, J = 8.1, 7.5, 1 Hz, 1H, H7), 7.46 (m, 2H, H2’+H6’), 7.37 (dd, J = 8.0, 7.5, 1.1 Hz, 1H, H6), 7.28 (m, 2H, H3’+H5’), 2.38 (s, 3H, CH3); ¹³C NMR (CDCl3) δ: 141.8 (C2), 136.3 (C4’), 134.6 (C3a), 134.4 (C8a), 130.3 (C4a), 130.0 (C3’+C5’), 128.9 (C1’), 126.9 (C7), 125.2 (C2’+C6’), 125.0 (C6), 124.3 (C5), 114.9 (C3), 113.0 (C8), 21.4 (CH3); Anal. Calcd for C16H12N2S (264.34): C, 72.70; H, 4.58; N, 10.60; S, 12.13. Found: C, 72.64; H, 4.50; N, 10.68; S, 12.07.

3-(4-Bromophenyl)pyrazolo[5,1-b][1,3]benzothiazole (6c)
Starting from 5c (0.490 g), beige crystals (0.184 g, 56%); mp 200-201 °C; IR (KBr): 3087, 1593, 1545, 1471, 1459, 1391, 812, 746 cm⁻¹; ¹H NMR (DMSO-d6) δ: 8.53 (s, 1H, H2), 8.1 (d, J = 8.0, 1H, H8), 7.9 (d, J = 8.0 Hz, 1H, H5) 7.66, 7.54 (m, 4H, H-bromophenyl), 7.60 (m, 1H, H7), 7.60 (m, 1H, H6); ¹³C NMR (DMSO-d6) δ: 143.0, 135.1, 133.9, 132.8 (2C), 131.0, 130.0, 128.0, 127.3 (2C), 126.1, 125.9, 119.5, 113.5, 113.1; Anal. Calcd for C15H9BrN2S (329.21): C, 54.72; H, 2.76; N, 8.51; S, 9.74. Found: C, 54.48;
H, 2.60; N, 8.50; S, 9.62.

3-(4-Chlorophenyl)pyrazolo[5,1-b][1,3]benzothiazole (6d)
Starting from 5d (0.450 g), beige crystals (0.182 g, 64%); mp 182-183 °C; IR (KBr): 3087, 1547, 1472, 1459, 1391, 747 cm⁻¹; ¹H NMR (CDCl₃) δ: 8.2 (s, 1H, H₂), 8.0 (d, J = 8.0, 1H, H₈), 7.7 (d, J = 8.0 Hz, 1H, H₅) 7.6- 7.3 (m, 6H, H-chlorophenyl, H₆,7); ¹³C NMR (CDCl₃) δ: 141.6, 134.8, 134.2, 131.8, 130.2, 129.2 (2C), 127.8, 126.8, 126.2 (2C), 125.0, 124.0, 113.5, 112.9; Anal. Calcd for C₁₈H₁₈ClN₂S (284.76): C, 63.27; H, 3.19; N, 9.84; S, 11.26. Found: C, 63.12; H, 3.08; N, 9.90; S, 11.18.

3-(4-Fluorophenyl)pyrazolo[5,1-b][1,3]benzothiazole (6e)
Starting from 5e (0.460 g), beige crystals, (0.240 g, 91%); mp 150-151 °C; IR (KBr): 3070, 1552, 1502, 1472, 1373, 1238, 830, 757 cm⁻¹; ¹H NMR (CDCl₃+DMSO-d₆) δ: 8.3 (s, 1H, H₂), 8.0 (m, 2H, H₅,8), 7.6- 7.4 (m, 4H, H-Fphenyl, H₆,7), 7.3-7.1 (m, 2H, H-Fphenyl); ¹³C NMR (CDCl₃+DMSO-d₆) δ: 162.0 (d, J_C,F = 239 Hz), 141.2, 134.3, 133.8, 129.6, 127.5 (d, J_C,F = 3 Hz), 126.5, 126.3 (2C, d, J_C,F = 8 Hz), 124.8, 123.9, 115.8 (2C, d, J_C,F = 22.5 Hz), 113.4, 112.5; Anal. Calcd for C₁₈H₁₈FN₂S (268.31): C, 67.15; H, 3.38; N, 10.44; S, 11.95. Found: C, 66.97; H, 3.40; N, 10.45; S, 12.10.

3-(4-Nitrophenyl)pyrazolo[5,1-b][1,3]benzothiazole (6f)
Starting from 5f (0.460 g), yellow crystals (0.160 g, 53%); mp > 256 °C; IR (KBr): 3076, 2924, 1595, 1550, 1513, 1489, 1340, 1320, 841, 755 cm⁻¹; ¹H NMR (CDCl₃+TFA) δ: 8.5 (s, 1H, H₂), 8.3, 7.7 (m, 4H, H-NO₂phenyl), 8.0 (d, J = 8.1, 1H, H₈), 7.9 (d, J = 8.0 Hz, 1H, H₅) 7.6- 7.5 (m, 26H, H₆,7); ¹³C NMR (CDCl₃+TFA) δ: 146.1, 140.6, 136.9, 132.5, 129.5, 128.0, 126.8, 125.5 (2C), 124.9 (2C), 124.5, 117.2, 113.4, 111.5; Anal. Calcd for C₁₈H₁₈N₃O₂S (295.32): C, 61.01; H, 3.07; N, 14.23; S, 10.86. Found: C, 60.88; H, 3.12; N, 14.15; S, 10.86.

(2Z)-2-[(4-Nitrophenyl)methylidene]-1,3-benzothiazol-3(2H)-amine (7)
To a suspension of 3-amino-2-(4-nitrobenzyl)-1,3-benzothiazol-3-ium 4-methylbenzenesulfonate (5e, 1 mmol, 0.460 g) in MeCN (15 mL), TEA (1 mL) was added and the mixture was refluxed for 5 min. The formed deep red solution was cooled to rt, and the precipitated crystals were filtered off to give 7 (0.220 g, 77%) as deep red crystals; mp 193-194 °C; IR (KBr): 3330, 3065, 1589, 1579, 1552, 1478, 1316, 1190, 1114, 840, 742 cm⁻¹; MS: 285, 269, 223; ¹H NMR (DMSO-d₆+CDCl₃) δ: 8.1 and 7.3 (m, 4H, H-NO₂phenyl), 7.5 (d, J = 8.0, 1H, H₇), 7.3-7.1 (m, 2H, H₄,5), 7.0 (m, 1H, H₆), 6.4 (s, 1H, H(=CH)), 5.5 (s, 2H, H-NH₂); ¹³C NMR (DMSO-d₆+CDCl₃) δ: 148.5, 145.0, 142.0, 140.7, 126.6, 124.0 (2C), 123.9 (2C), 121.5, 121.2, 118.4, 109.8, 90.5; Ms: m/z 285, 269, 223; Anal. Calcd for C₁₄H₁₁N₃O₂S (285.32): C, 58.93; H, 3.89; N, 14.73; S, 11.24. Found: C, 58.81; H, 3.76; N, 14.70; S, 11.28.
ACKNOWLEDGEMENTS
Thanks are due to the COST BM0701 (ATENS) program, project GVOP-3.2.1-2004-04-0311/3.0, and Hungarian Turkish Intergovernmental Exchange Program (TÉT) TR-14/03 for support.

REFERENCES AND NOTES