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Abstract The CORAL software (http://www.insilico.eu/
coral) was used to build up quantitative structure–property
relationships (QSPRs) for the retention characteristics of 93
derivatives of three groups of heterocyclic compounds: 2-phe-
nyl-1,3-benzoxazoles, 4-benzylsulfanylpyridines, and ben-
zoxazines. The QSPRs are one-variable models based on the
optimal descriptors calculated from the molecular structure
represented by simplified molecular input-line entry systems
(SMILES). Each symbol (or two undivided symbols) of
SMILES is characterized by correlation weight. The optimal
descriptor is the sum of the correlation weights. The numerical
data on the correlation weights were calculated with the
Monte Carlo method by the manner which provides best cor-
relation between endpoint and optimal descriptor for the cal-
ibration set. The predictive ability of the model is checked
with the validation set (compounds invisible during building
up of the model). The approach has been checked with three
random splits into the training, calibration, and validation sets:

all models have apparent predictive potential. Themechanistic
interpretation of the molecular features extracted from
SMILES as the promoters of increase or decrease of examined
endpoints is suggested.

Keywords QSPR . SMILES . Retention factor .Monte Carlo
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Introduction

Reversed-phase high-performance liquid chromatography
(RP-HPLC) belongs to the most employed tools of analytical
chemistry. Due to a wide range of the combination of station-
ary and mobile phase defining a given experimental setup, the
chromatographic retention prediction methodologies are in-
tensively studied [1]. Although different retention prediction
approaches exist, modelling by quantitative structure retention
relationships (QSPRs) of solutes is an attractive approach ow-
ing to relative simplicity and convenience [2].

The CORAL software [3] has been tested as a tool for
development of the predictive models of chromatographic re-
tention characteristics of derivatives of 1-phenyl-
benzylsulfanyltetrazole. In fact, the CORAL model is a math-
ematical function of so-called correlation weights of different
molecular features extracted from the simplified molecular
input-line entry systems (SMILES). In other words, the model
is based on descriptors which are the sum of all correlation
weights involved in a molecular system. The numerical data
on the correlation weights are calculated with the Monte Carlo
technique [3]. The SMILES-based optimal descriptors give
the possibility to interpret the influence of different molecular
features. For instance, a molecular feature that is characterized
by positive correlation weight is the promoter of increase of an
endpoint, whereas a feature which is characterized by
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negative correlation weight is the promoter of decrease of
the endpoint.

Often, QSPRs are valid for congeneric series only.
Therefore, in the present study, we apply CORAL for varied
heterocyclic compounds (Fig. 1). The dataset consists of 21
derivatives of 2-phenyl-1,3-benzoxazoles, 32 derivatives of 4-
benzylsulfanylpyridines, and 40 derivatives of benzoxazines.
Thus, the aim is estimation of optimal descriptors calculated
with the SMILES as a tool to predict retention parameters for
the above structurally diverse compounds (n=93).

Materials and methods

Determination of retention data

The studied compounds were synthesized along similar lines
as done in previous papers where the synthetic details and
analytical data of the studied compounds are described: 2-
phenyl-1,3-benzoxazoles [4], 4-(benzylsulfanyl)pyridines
[5], and benzoxazines [6]. Acetonitrile Chromasolv (Sigma-
Aldrich) with water content below 2×10−3 vol% (determined
by gas chromatography) was used for the measurements. All
other chemicals were of analytical grade.

The measurements were performed using a liquid chro-
matograph HP 1090 L with a diode array detector (both
Hewlett-Packard) working at 235 nm. Reverse-phase RxC-
18 ZORBAX 150×4.6 mm column was used. The tempera-
ture of the column was held at 25.0 °C. Chromatography was
performed with mobile phases containing 80:20, 75:25, 70:30,
65:35, and 60:40 (v/v) acetonitrile to water. The flow rate of
the mobile phase was 0.8 mL/min. An aqueous solution of
thiourea (c=1 mg/L) was used for the determination of a dead
time. The concentration of solutions of the studied compound
for HPLC measurements was 1×10−4 mol/L in acetonitrile.
The Rheodyne loop of 10 μL was used for introduction of the
derivative solutions to the HPLC system. All measurements
were made at least in triplicate; the average reproducibility of
each determination was better than 1.0 % relative.

The retention factor k at a given mobile phase composition
was calculated as

k ¼ tR−tM
tM

ð1Þ

where tR is the retention time of a derivative (s) and tM is the
dead time (s).

The retention characteristics of the linear solvent strength
model [7] were calculated using the linear relationship be-
tween the logarithm of the retention factor and the volume
fraction of the organic modifier in the mobile phase (φ)

log k ¼ logkw−Sφ ð2Þ
where k is the solute retention factor at a given φ, log kw is log
k extrapolated to a mobile phase composition with 0 % organ-
ic modifier (i.e., in pure water), and S is a constant for a given
solute in a given chromatographic system (is equal to the slope
of the linear regression). The coefficient of determination of
linear regressions was for all compounds R2>0.99 (see
Electronic Supplementary Material (ESM) Table S1).

Building up QSPR models

SMILES were used for representation of the molecular struc-
ture, and they were generated with ACD/ChemSketch soft-
ware [8]. The CORAL software [9] was used for the calcula-
tions. The SMILES-based optimal descriptors of the correla-
tion weights (DCW), which are calculated with data on the
training set, are computed as the following (cf. [10]):

DCW T ;Nð Þ ¼ CW HALOð Þ þ CW NOSPð Þ
þ CW BONDð Þ þ ΣCW Skð Þ ð3Þ

where Sk are one-component SMILES attributes (the compo-
nent of SMILES represents one symbol, e.g., C, c, N, n, =, F,
or two symbols which cannot be separated, e.g., Cl, Br, @@),
which are representations of molecular features. CW(Sk) are
correlation weights of the SMILES fragments; CW(HALO)
are correlation weights of the presence/absence of halogen
atoms; CW(NOSP) are correlation weights of the presence/
absence of nitrogen, oxygen, sulfur, and phosphorus; and
CW(BOND) are correlation weights of the presence/absence
of double (B=^), triple (B#^), and/or stereo chemical (B@^)
bonds. Threshold (T) and the number of epochs (N) are
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Fig. 1 The structures of studied
A 2-phenyl-1,3-benzoxazoles, B
4-benzylsulfanylpyridines, and C
benzoxazoles
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parameters of the Monte Carlo optimization, used for calcula-
tion of the correlation weights. Threshold is criterion for clas-
sification of components of the representation of the molecu-
lar structure into two classes: rare (noise) and active (not rare).
The correlation weight of a rare component is fixed as zero;
hence, the rare component is not involved in the building up of
the model. N is the number of epochs of the Monte Carlo
optimization. The optimal values give the maximum of the
correlation coefficient between an endpoint and DCW(T, N)
for the training set. The threshold and N were calculated ac-
cording to the scheme suggested in [11]; the range of the
threshold was 1–5; the range of N was 1–100. The preferable
T* and N* are values of above-mentioned parameters which
give the maximal correlation coefficient for the calibration
set. The T* and N* are utilized to build up a model.

Having numerical data on the correlation weights, one can
calculate DCW(T*, N*) for compounds of training and cali-
bration sets. Using data on the training set, one can calculate
by the least squares method model of view

endpoint ¼ C0 þ C1 � DCW T*;N*ð Þ ð4Þ
where endpoint is log kw or S. The predictability of the model
calculated with Eq. (4) should be checked with the external
validation set. It is to be noted that the statistical quality of the
model for calibration and validation sets is a mathematical
function of the threshold and the number of epochs of the
Monte Carlo optimization. Apparently, that statistical quality
of the model for external validation set is the most important
indicator predictability of an approach. In order to appropri-
ately estimate this approach, we have examined three random
splits for the log kw and S.

The structures, retention characteristics, and SMILES of
the examined compounds are represented in the Electronic
supplementary material section. Three splits into the training
set, calibration set, and validation set of these substances were
examined for each endpoint. These splits were prepared ac-
cording to the following principles: (i) the ranges of the end-
point are comparable for all above-mentioned sets; (ii) these
splits are different; and (iii) these splits are random. The his-
tograms for log kw and S show (see ESM, Table S2) that
identical splits for two examined parameters will lead to un-
balanced ranges of the log kw or S for the training, the calibra-
tion, and the validation sets. Therefore, utilized splits are bal-
anced for log kw and S, separately. Moreover, in the case of S,
the validation set is the same for three splits, whereas the
training and calibration sets are different.

Results and discussion

Table 1 contains one-variable models for log kw and S together
with the statistical characteristics. One can see that different

splits have different values of the threshold and the number of
epochs of the optimization. The statistical quality of models
for log kw and S considerably varies for different distributions
into the visible training and calibration sets and invisible val-
idation set. However, all suggested models can be estimated as
quantitative ones.

Having data on a group of runs of the Monte Carlo optimi-
zation, one can obtain the following categories of molecular
features: the first category: features which have positive cor-
relation weight for all runs; the second category: features
which have negative correlation weight for all runs; and the
third category: features which have runs where their correla-
tion weight is positive together with runs where their correla-
tion weight is negative. Table 2 contains examples of molec-
ular features of the above three categories for the cases of log
kw and S.

The probabilistic criteria suggested in work [13] for detec-
tion of outliers give for log kw models 5, 3, and 7 outliers for
splits 1, 2, and 3, respectively. In the case of the model for S,
the number of outliers is 2 for all splits.

Table 1 Statistical quality of the QSPR models for half-wave potential
of 4-(benzylsulfanyl)pyridines. Here, n, R2,Q2, s, and F are the number of
substances in set, coefficient of determination, leave-one-out cross-
validated coefficient of determination, standard error of estimation, and
Fischer F ratio, respectively. The cRp

2 is result of Y-scrambling according
to [12] model and has predictive potential if cRp

2 is greater than 0.5

Split Set n R2 cRp
2 Q2 s F

log kw=−3.8635 (±0.0312)+0.1494 (±0.0006)×DCW(2, 39)

Split 1 Training 39 0.9603 0.9540 0.9568 0.167 894

Calibration 27 0.9161 0.8969 0.8982 0.167 –

Validation 27 0.9381 – 0.9296 0.213 –

log kw=−4.9519 (±0.0620)+0.1654 (±0.0014)×DCW(2, 25)

Split 2 Training 39 0.9393 0.9145 0.9309 0.227 572

Calibration 27 0.9281 0.9117 0.9184 0.247 –

Validation 27 0.9075 – 0.8908 0.263 –

log kw=−3.1099 (±0.0260)+0.1427 (±0.0006)×DCW(2, 57)

Split 3 Training 39 0.9714 0.9621 0.9684 0.142 1257

Calibration 27 0.8799 0.8601 0.8611 0.309 –

Validation 27 0.9509 – 0.9425 0.186 –

S=−1.1028 (±0.0209)+0.1102 (±0.0005)×DCW(2, 34)

Split 1 Training 45 0.9705 0.9592 0.9674 0.159 1413

Calibration 23 0.9127 0.8913 0.8688 0.344 –

Validation 25 0.9282 – 0.9139 0.256 –

S=−2.1135 (±0.0542)+0.1269 (±0.0013)×DCW(2, 39)

Split 2 Training 45 0.9308 0.9200 0.9191 0.245 526

Calibration 23 0.9715 0.9589 0.9654 0.175 –

Validation 25 0.9094 – 0.9280 0.255 –

S=−2.0726 (±0.0461)+0.1310 (±0.0011)×DCW(2, 37)

Split 3 Training 45 0.9407 0.9313 0.9318 0.239 682

Calibration 23 0.9609 0.9372 0.9519 0.251 –

Validation 23 0.9301 – 0.9172 0.295 –
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Conclusions

The described approach gives quantitative models of reten-
tion characteristics for the dataset which involves deriva-
tives of 2-phenyl-1,3-benzoxazoles, derivatives of 4-
benzylsulfanylpyridines, and derivatives of benzoxazines.
The statistical quality of these models is dependent upon
the distribution of the data into the training, calibration,
and validation sets. However, for all examined splits into

the training, calibration, and validation sets, the models
have good predictive potential (Table 1). Thus, the ability
of the described approach to be a tool to predict the reten-
tion characteristics of non-congeneric series of compounds
is demonstrated.

Acknowledgments The authors acknowledge support from the EU
project PROSIL funded under the LIFE program (project LIFE12 ENV/
IT/000154).

Table 2 Correlation weights of
SMILES attributes identified as
promoters increase or decrease for
studied endpoints, and their
distributions over training and
calibration sets (validation set is
invisible during building up of a
model)

Split Sk CW(Sk) in
run 1

CW(Sk) in
run 2

CW(Sk)
in run 3

Frequency of Sk in
the training set

Frequency of Sk in
the calibration set

(a) Promoters of increase/decrease for log kw
Promoters of increase

1 1 2.57960 3.29647 3.27353 39 27

2 1 2.67976 3.13591 2.79956 39 27

3 1 2.80598 3.13609 2.49010 39 27

1 2 3.54681 3.30465 3.19329 39 27

2 2 2.87543 3.31334 2.85573 39 27

3 2 3.01584 2.86388 3.18568 39 27

1 3 2.11066 2.32756 2.28935 29 18

2 3 2.78069 2.83531 2.78358 26 21

3 3 2.13136 1.82972 1.73493 27 20

Promoters of decrease

1 N −0.31087 −0.34739 −0.20499 36 24

2 N −2.21736 −2.00452 −2.16118 34 26

3 N −2.74535 −2.75464 −2.74659 34 26

1 O −1.23637 −1.22156 −1.21483 27 18

2 O −1.20212 −1.10913 −1.15371 26 19

3 O −0.95744 −0.95474 −0.93318 25 20

(b) Promoters of increase/decrease for S

Promoters of increase

1 1 2.82676 3.24671 2.84889 45 23

2 1 3.15952 3.07769 2.85971 45 23

3 1 2.92198 3.01125 2.50604 45 23

1 O 1.41491 1.32369 1.40826 29 12

2 O 0.90152 0.83982 0.96456 27 14

3 O 0.86511 0.87234 0.84902 29 12

1 NOSP1110 3.83322 3.63236 3.66282 25 7

2 NOSP1110 3.44023 3.51463 3.29309 19 13

3 NOSP1110 3.22358 3.15348 3.30419 21 11

Promoters of decrease

1 ( −0.41022 −0.38892 −0.42931 45 23

2 ( −0.02752 −0.04151 −0.04113 45 23

3 ( −0.17956 −0.17837 −0.18890 45 23

1 n −2.17575 −2.35437 −2.49202 25 18

2 n −0.57348 −1.11178 −0.79806 31 12

3 n −0.79155 −0.75441 −0.59832 30 13

1, 2, and 3 indicators of cycles (rings); N indicator for nitrogen; O indicator for oxygen; NOSP1110 indicator of
the situation Bmolecular structure contains nitrogen, oxygen, and sulfur (not phosphorus)^; bracket ( indicator of
branching of molecular skeleton; n indicator of nitrogen in aromatic system
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