Electronic Letters on Science & Engineering 13 (2) (2017)

Special Issue BSW2017 Sixth Bozok Science Workshop: Studies from Nuclei to Nanomaterials with Applications

Available online at www.e-lse.org

Bozok Science Workshop 2017, Yozgat, August 23-25, 2017.

QSAR Study on Thiosemicarbazone Derivatives as Ribonucleotide Reductase Inhibitors

Mustafa LAWAR^{1,*}, İsmail YALÇIN², Kayhan BOLELLI², Hakan Sezgin SAYINER³, Fatma KANDEMIRLI⁴

¹Kastamonu University, Faculty of Engineering & Architecture, Department of Genetic & Bioengineering. TR37200 Kastamonu, Turkey

 ²Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, TR06100 Ankara, Turkey
³Department of Infectious Diseases, Faculty of Medicine, Adiyaman University, TR02040 Adiyaman, Turkey
⁴Biomedical Engineering Department, Faculty of Engineering and Architecture, Kastamonu University, TR37200 Kastamonu, Turkey

Abstract: QSAR analysis on thiosemicarbazone derivatives exposing RNR inhibitory activities [1] were performed. In this series of 21 compounds, 13 of them were reported with inhibitory concentration (IC50) in the 1 M range. The inhibitory concentration of those compounds were converted into -logIC50 before being correlated with the structural features.

The quantum chemical calculations have been carried out at the B3LYP level of theory using Gaussian-09 series of program package. The density functional theory (DFT), with the Becke's three parameter exchange functional along with the Lee– Yang–Parr correlation functional (B3LYP) were performed in order to calculate the quantum chemical descriptors such as HOMO, LUMO, Energy gap, Hardness, Softness, Chemical potential and Dipole moment of the investigated molecules. Calculated descriptors for some thiosemicarbazone derivatives were given in Table 1.

	A A	номо	LUMO	Energy gap	Hardness	Softness	chemical potential	Dipole moment
2-OH	Н	-0.218	-0.079	0.139	0.070	14.380	0.063	6.536
2-OH	4-Cl	-0.260	-0.083	0.177	0.088	11.305	0.092	7.953
4-OH	Н	-0.217	-0.074	0.143	0.071	14.020	0.075	6.122
4-OH	4-Cl	-0.221	-0.078	0.143	0.072	13.983	0.066	7.725
3-OCH3-4-OH	Н	-0.250	-0.072	0.178	0.089	11.265	0.089	6.171
3-OCH3-4-OH	4-Cl	-0.217	-0.076	0.140	0.070	14.244	0.073	8.088
2-Furyl	Н	-0.220	-0.080	0.140	0.070	14.264	0.071	6.171

Tablo 1: Some descriptor calculations of thiosemicarbazone derivatives

* Corresponding author; Tel.: +(90) 543 8998897 E-mail: lawermustafa@yahoo.com

ISSN 1305-8614 © 2017 www.e-lse.org All rights reserved.

?-LSE

Mustafa LAWAR et al / Elec Lett Sci Eng 13 (2) (2017) 37-38

Keywords: QSAR, Thiosemicarbazone, RNR inhibitory

References:

[1] Moorthy N. S. H. N., Cerqueira N. M. F. S. A., Ramos M. J., Fernandes P. A., Med. Chem. Res. 21 (2012) 739–746.