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A B S T R A C T

Panomycocin is a naturally produced potent antimycotic/antifungal protein secreted by the yeast
Wickerhamomyces anomalus NCYC 434 with an exo-β-1,3-glucanase activity. In this study the three dimensional
structure of panomycocin was predicted and the computational site-directed mutagenesis was performed to
enhance its thermal stability in liquid formulations over the body temperature for topical therapeutic applica-
tions. Homology modeling was performed with MODELLER and I-TASSER. Among the generated models, the
model with the lowest energy and DOPE score was selected for further loop modeling. The loop model was
optimized and the reliability of the model was confirmed with ERRAT, Verify 3D and Ramachandran plot values.
Enhancement of the thermal stability of the model was done using contemporary servers and programs such as
SPDBViewer, CNA, I-Mutant2.0, Eris, AUTO-MUTE and MUpro. In the region outside the binding site of the
model Leu52 Arg, Phe223Arg and Gly254Arg were found to be the best thermostabilizing mutations with 6.26 K,
6.26 K and 8.27 K increases, respectively. In the binding site Glu186Arg was found to be the best thermo-
stabilizer mutation with a 9.58 K temperature increase. The results obtained in this study led us to design a
mutant panomycocin that can be used as a novel antimycotic/antifungal drug in a liquid formulation for topical
applications over the normal body temperature.

1. Introduction

Panomycocin is a naturally produced antifungal/antimycotic
monomeric glycoprotein of 49 kDa with an exo-β-1,3-glucanase ac-
tivity. It is produced and secreted into the environment by the killer (K
+) yeast strain Wickerhamomyces anomalus NCYC 434 (formerly known
as Pichia anomala) and has been shown as a promising potential anti-
fungal agent in biomedicine (Izgü et al., 2007, 2005; Izgü and Altınbay,
2004; Walker, 2011). Panomycocin hydrolyzes O-glycosidic linkage of
the β-1,3-linked glucan residues, which are the vital polymers for the
integrity of the fungal cell wall, from their non reducing terminus
yielding α-glucose. This disrupts the cell wall and leads to the death of
the target cells (Izgü et al., 2006). In several studies, the potent in vitro
antifungal activity of panomycocin against Candida spp. and dermato-
phytes was shown (Izgü et al., 2007). The mammalian cells lack the β-
1,3-glucans in their structure, and this highlights the use of panomy-
cocin as a selective antifungal/antimycotic agent in therapy with

improved safety. In solution, panomycocin is stable and active at the pH
range between 3.0 and 5.5 up to 37 °C. In lyophilized form, it retains its
stability and activity up to 38.5 °C (Izgü and Altınbay, 2004). Recently a
liposomal lyophilized powder formulation of panomycocin was devel-
oped for topical therapeutic purposes against vulvovaginal candidiasis
which affects 80% of women worldwide. For the stability of panomy-
cocin at higher body temperatures in liquid formulations, its thermal
stability needs to be enhanced (Izgü et al., 2017).

Thermal stability enhancement can be achieved by several ap-
proaches including use of excipients, immobilization, chemical mod-
ification and engineering of proteins. The most classical method in
protein engineering is the so-called ‘rational design’ approach which
involves ‘site-directed mutagenesis’ of proteins. With this technique it is
possible to change a single amino acid in the sequence of a protein for
another amino acid with different physico-chemical properties (Bernal
et al., 2018). Rational design is an effective approach when the three
dimensional (3D) structure and mechanism of a protein of interest is
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known. Numerous computational tools such as homology modeling, ab
initio and threading methods have been developed to predict the 3D
structures. There are also computational tools that are used in the in-
vestigation of the effects of mutations on the thermal stability of pro-
teins. These inturn allow technically easy, time saving and cost effective
protein engineering (Talluri, 2011).

Among the computational 3D prediction methods, the method of
homology modeling usually provides the most reliable result as this
technique predicts the structure of a protein from its amino acid se-
quence with high accuracy which is comparable to the results obtained
experimentally (Cavasotto and Phatak, 2009). Homologous proteins
with related amino acid sequences have similar 3D structure, which is
more conserved and changes much slower than the related sequence
during evolution (Krieger et al., 2012). Homology modeling, also called
comparative or sometimes template based modeling, uses information
from one or more related proteins with known 3D structure (template)
to generate models for the target protein. The importance of homology
modeling is increasing as the number of protein 3D structures de-
termined increases. This makes the drug discovery process faster, ea-
sier, cheaper and more practical (Muhammed and Aki-Yalcin, 2018).

The amino acid sequence of panomycocin is similar to the amino
acid sequence of the exo-β-1,3-glucanase of W. anomalus strain K,
which was previously determined and deposited with UniProt databank
(accession number AJ222862) (Izgü et al., 2006).

In this study the 3D structure of panomycocin was predicted by
homology modeling using MODELLER program (Kuntal et al., 2010a)
and I-TASSER (Iterative Threading ASSEmbly Refinement) server (Yang
et al., 2014). The structure built was reliable as ERRAT, Verify 3D and
Ramachandran plot gave high scores. The thermostabilizing effect of
the computational site-directed mutagenesis was assessed by using
SPDBViewer (Guex and Peitsch, 1997), CNA (Constraint Network
Analysis) (Krüger et al., 2013), I-Mutant2.0 (Capriotti et al., 2005),
AUTO-MUTE (Masso and Vaisman, 2010), Eris (Yin et al., 2007) and
MUpro (Cheng et al., 2005) servers. The substitution of relatively
thermostable amino acids at the determined positions in the structure of
panomycocin will highly enhance its activity and stability at tempera-
tures higher than the body temperature in liquid formulations for to-
pical applications.

2. Materials and methods

The amino acid sequence in FASTA format, retrieved from UniProt
with the accession number AJ222862, was used for the 3D structure
prediction of panomycocin (http://www.uniprot.org/) (Apweiler et al.,
2011).

2.1. Determination of the signal peptide and the KEX2 cleavage site

The signal peptide of the protein was determined using SignalP 4.1
(Petersen et al., 2011), Signal-CF (Chou and Shen, 2007), PrediSi (Hiller
et al., 2004) and Signal-3 L (Shen and Chou, 2007) servers. The KEX2
cleavage site was predicted with PROSPER (PROtease Specificity Pre-
diction servER) (Song et al., 2012) and SMART (Simple Modular Ar-
chitecture Research Tool) (Letunic et al., 2015) servers.

2.2. Homology modeling

The sequence just downstream of the KEX2 cleavage site was used
for the modeling. Templates to the target sequence were obtained by
using BLAST (Basic Local Alignment Search Tool) (Altschul et al., 1997)
in NCBI (National Center for Biotechnology Information) (Agarwala
et al., 2016). The 3D structures of the templates were downloaded from
PDB (Protein Data Bank) (https://www.rcsb.org/) (Rose et al., 2017).
Then, the target sequence and the templates were loaded to Easy-
Modeller 4.0 (Kuntal et al., 2010b). In this program the templates were
aligned with each other and the target sequence was aligned with the

templates. Then with MODELLER 9.18 nin. models were generated.
Another model was also generated with I-TASSER server for further
comparison with MODELLER results.

2.2.1. Comparison of the generated models
DOPE (Discrete Optimized Protein Energy) score, energy, TM

(Template Modeling) score and RMSD (Root Mean Square Deviation)
values were used to compare the generated models. The DOPE score
was obtained from MODELLER, the energy was calculated with
GROMOS96 (GROningen MOlecular Simulation96) (Van Gunsteren
W.F., 2017) in the SPDBViewer (Swiss PDB Viewer), the TM score was
measured with TM score calculator (Xu and Zhang, 2010) and the
RMSD value was calculated with VMD (Visual Molecular Dynamics)
(Humphrey et al., 1996) for each model.

2.2.2. Loop modeling
The loop modeling was performed on the best model determined.

The DOPE profile of the best model, the structural and alignment
analysis between the target and the templates were used to determine
the regions that loop modeling might improve the model quality.

Loop modeling was performed separately at five postions in the
amino acid sequence (1–5, 233–240, 313–320, 330–337, 368–374).
Loop modeling at each position was analysed by the DOPE score, en-
ergy, TM score and RMSD value of the resulting five models. The results
obtained from each model were compared with the pre-determined best
model. The thermal stability of the best model and the best loop model
were also determined and compared.

2.2.3. Optimization, verification and validation
Optimization of the best model and its loop model was performed by

MODELLER. The optimized resulting models were evaluated by SAVES
(Structure Analysis and Verification Server) server (Colovos and Yeates,
1993; Laskowski et al., 1993).

2.3. Determination of binding site

COACH (Yang et al., 2013), COFACTOR (Roy et al., 2012), Meta-
Pocket (Bingding (2009)), CASTp (Computed Atlas of Surface Topo-
graphy of Proteins) (Dundas et al., 2006) and DoGSiteScorer (Volkamer
et al., 2012) servers were used to predict the binding (active) site of the
best model and its loop model.

2.4. Determination of the appropriate sites on the models that would
improve the thermal stability

Determination of the sites that would enhance the thermal stability
of the models was done with GROMOS96 in the SPDBViewer. The free
energy (in KJ/mol) of each position in the models and the energy
profiles of the alignment were predicted and investigated. All the amino
acids in the unstable regions were substituted with the rest nineteen
amino acids. SPDBViewer was used to alter the amino acid residues.
The substitutions which gave a lower energy both outside and inside of
the binding regions were recorded. The best ten and three amino acid
substitutions, outside and inside binding regions respectively, were
selected for further analysis. The combinations among the substitutions
were also tested and those that gave higher energy were eliminated
(five outside and two inside binding region substitutions) from further
analysis. The temperature changes of the selected substitutions were
then measured (in Kelvin) by CNA server. The accuracy of the predicted
sites for the substitutions were further tested with I-Mutant2.0, AUTO-
MUTE, Eris and MUpro servers.
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3. Results

3.1. Determination of the signal peptide and the KEX2 cleavage site

SignalP 4.1, Signal-CF, PrediSi and Signal-3 L server results showed
that the first seventeen amino acids constitute the signal peptide.

SMART server estimated the KEX2 cleavage site at positions 30–32
(Fig. 1A). In a previous study on the primary translation product, it was
suggested that the KEX2 cleavage site might be at the dibasic Lys-Arg
motif at positions 30–31 (Fig. 1B) (Grevesse et al., 2003). The N-
terminal amino acid sequencing of panomycocin showed that the se-
creted mature protein starts with glycine at the position 32 (Izgü et al.,
2006). Thus, these findings showed that the cleavage takes place be-
tween the arginine and glycine residues in the Lys-Arg-|-Gly sequence
at positions 30–31-|-32.

3.2. Homology modeling

Although the BLAST results showed that there were proteins with
100% identity and coverage with panomycocin, their 3D structures
were unknown. The proteins, 1EQP, 2PB1 and 1CZ1, with known 3D
structures were selected as templates. All the templates that were used
in this study showed 98% coverage and 66% identity with panomy-
cocin.

3.2.1. Determination of the best model
Nine different models were generated with MODELLER by using the

above mentioned templates and then were compared according to their
DOPE score, energy, TM score and RMSD values. The TM score and
RMSD values of each model were close to each other. Although model 1
had the second lowest DOPE score, it had the lowest energy among
others, thus, it was chosen as the best model (Fig. 2A and B).

3.2.2. Loop modeling
Loop modeling was performed at the five different positions in the

amino acid sequence as indicated in the methods section. DOPE profile
of the best model (model 1) with respect to the templates, the structural
and alignment analysis between the target and the templates were
utilized for the determination of the regions that would improve the
model.

Amino acid positions 1–5 and 368–374 indicated an inconsistent
change in DOPE score and energy as there was no correlation in these
values. Positions 233–240 and 330–337 gave higher values than the

best model and the position 313–320 gave lower values of DOPE score
and energy when compared to the best model. Thus, only the loop
modeling at amino acid positions 313–320 ha s been selected for further
analysis (Fig. 3). The TM score and RMSD value of the selected loop
model were also measured. The TM score (0.4083) was lower than that
of the best model (0.4099) and the RMSD value (5.5950 Å) was higher
than that of the best model (5.5540 Å). As TM score was not higher and
the RMSD value was not lower than that of the best model these values
were not considered as satisfactory in topology and position measure-
ments. Thus, the computational thermal stability study was performed
not only in the loop model but also in the best model.

3.2.3. Optimization, verification and validation of the models
Optimization of the loop model and the best model with MODELLER

showed lower DOPE score and energy, higher TM score and lower
RMSD value for the models. DOPE score and energy for the loop model
was -50808.406250 and -19918.740 KJ/mol respectively and TM score
and RMSD value was 0.4083 and 5.5950 Å respectively. DOPE score
and energy for the best model was -50360.93359 and -19740.609 re-
spectively and TM score and RMSD value was 0.4099 and 5.5540 Å
respectively. The optimized models were verified and validated with
SAVES server. The overall quality factor estimated by ERRAT was
89.175. Results obtained from Verify 3D showed that 96.97% of the
residues had an average 3D to 1D score greater than or equal to 0.2 and
the results of Ramachandran plot showed that 99.70% of the residues
were inside the allowed region of the plot (Fig. 4 A, B, C). All the results
obtained showed that the loop model which was generated is reliable
(Fig. 5). TM score, energy and RMSD values of the I-TASSER model
were also calculated and compared with the MODELLER results. The
RMSD value obtained (78.0966 Å) for the I-TASSER model was much
higher than that of the MODELLER and thus the MODELLER results
were preferred and used in this study.

3.3. Binding site determination

COACH, COFACTOR and MetaPocket servers indicated that the
binding site pocket included the amino acids Glu23, Phe25, His129,
Asn140, Asn185, Glu186, Tyr248, Phe251, Glu285, Trp361 and
Trp371. Further binding site predictions by CASTp and DoGSiteScorer
servers also gave a similar result but with more amino acid coverage as
indicated in Fig. 6.

Fig. 1. A) KEX2 cleavage site estimation of SMART server. B) KEX2 cleavage site suggested in the previous study (indicated by a question mark).
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3.4. Determination of the appropriate sites that would improve the thermal
stability

The GROMOS96 in SPDBViewer showed that amino acid substitu-
tions at positions 52 Leu→Arg, 120 Tyr→Arg, 130 Gly→Ala, 195 Gly→
Pro, 204 Gly→Arg, 223 Phe→Arg, 243 Ile→Arg, 254 Gly→Arg, 293
Cys→Arg and 299 Gly→Arg were the best ten positions that might in-
crease the thermal stability of panomycocin outside of the binding

region.
The combinations of the substitutions between the amino acids,

which were close to each other in the model, were also tested for their
contribution to the thermal stability of the protein. Among the combi-
nations that were performed, the amino acid positions 52, 120, 204,
223 and 254 gave a lower energy. When all the substitutions at those
five positions were combined, the total energy was -21047.369 KJ/mol
which was lower than that of the uncombined substitution. This showed

Fig. 2. A) DOPE score of the models (model 1 gave the second lowest score). B) Energy of the models (model 1 gave the lowest value).

Fig. 3. DOPE profile of the best model (turquoise) and the loop model (red). The loop model showed a lower DOPE score at amino acid positions 313–320.
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an energy minimization of -1182.670 KJ/mol in the entire model. When
all the substitutions at the above mentioned ten best thermostabilizing
positions were combined, the energy of the entire model was higher
(-20993.869 KJ/mol). Thus, the amino acid positions at 52, 120, 204,
223 and 254 were determined as the best substitution positions outside

the binding region for the themostabilization of the protein.
GROMOS96 in SPDViewer also showed the best three amino acid sub-
stitution positions inside the binding region as 25 Phe→Arg, 186
Glu→Arg and 371 Trp→Arg.

Substitution mutations in both outside and inside the binding region
were estimated in terms of temperature (Kelvin) by the CNA server.
Before any substitution mutation, the cluster configuration entropy type
2 (H type 2), which is related with the melting point of the protein, was
-4.84 kcal/mol that is equivalent to 396.74 K. This value was compared
to the values obtained after substitution mutations. Mutations at posi-
tions 52, 223 and 254 outside the binding region and mutation 186
inside the binding region increased the thermal stability of the protein
(Table 1, Fig. 7). The accuracy of the results obtained with GROMOS96
and CNA server were also confirmed with I-Mutant2.0, Eris, AUTO-
MUTE and MUpro servers.

4. Discussion

In this study we have determined the 3D structure of panomycocin
which is a naturally produced potential antifungal protein with an exo-
β-1,3-glucanase activity. We have also determined the amino acid po-
sitions for substitutions that would enhance its thermal stability over
the normal body temperatures in liquid formulations for topical ther-
apeutic applications. Panomycocin which is produced and secreted by
W. anomalus NCYC 434 has exactly the same amino acid sequence as
the amino acid sequence of the exo-β-1,3-glucanase produced by W.
anomalus strain K, which has been previously deposited with UniProt
databank with accession number AJ222862. This amino acid sequence
contains the signal peptide and the site for cleavage. In the literature
the dibasic amino acids Lys-Arg at positions 30–31 was suggested as the
probable KEX2 cleavage sites (Grevesse et al., 2003). The SMART server
indicated the KEX2 cleavage sites as the amino acids Lys-Arg-Gly
(30–32) with Lys-Arg cleavage pattern. The N-terminal amino acid of
the secreted panomycocin is glycine and this proved that the KEX2
cleavage site is Lys-Arg-|-Gly- (-31-|-32-). Homology modeling was
performed with the secreted peptide sequence which is just down-
stream of the KEX2 cleavage site using MODELLER 9.18. Nine models
were generated and compared with respect to their DOPE score, energy,
TM score and RMSD value. All the models showed similar TM score and
RMSD value. Among them the model with the lowest energy and re-
latively low in DOPE score was selected for further computational
thermal stability studies as low energy and low DOPE score values in-
dicate a more stable 3D structure (Pucci et al., 2016).

The specificity of the function of a protein structure is often de-
termined by its loops. Accuracy of loop modeling is an important factor
which determines the value of the generated models for further appli-
cations (Kmiecik et al., 2016). We have performed loop modeling at five
different positions in the amino acid sequence by using DOPE profile of
the best model with respect to the templates, the structural and align-
ment analysis between the query and the templates. Only the loop
modeling at position 313–320 gave lower values of DOPE score and
energy when compared to the best model. This showed that the loop
modeling at this position is stable and thus it was selected for the fur-
ther computational thermal stability study. Optimization of the loop
model with MODELLER showed lower DOPE score, lower energy va-
lues, higher TM score and lower RMSD value than that of the model
before optimization. Thus, by optimization, the quality of the loop
model has been improved. The optimized model was then verified and
validated with SAVES. We have obtained values of 89.175, 96.97% and
99.70% for ERRAT, Verify 3D and Ramachandran plot respectively.
These high values proved that the generated model was reliable (Khor
et al., 2014). We have also compared the quality of the model generated
with MODELLER using I-TASSER server which is among the best per-
forming servers in the CASP (Critical Assessment of protein Structure
Prediction) experiments. Although the energy and TM score of the
models built with both MODELLER and I-TASSER were similar, the

Fig. 4. Verification and validation of the loop model. A) ERRAT results (95%
indicates rejection limit). B) Verify 3D (96.97% of the residues has 3D to
1D≥ 2). C) Ramachandran plot. The red region in the plot indicates en-
ergetically the most favored region; the yellow region represents the allowed
region, and the white field represents the disallowed region.

Fig. 5. 3D structure of the loop model of panomycocin generated with MOD-
ELLER.
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RMSD value of the I-TASSER model was higher. This indicates that the
model generated by MODELLER is more similar to the templates than
the I-TASSER (Kufareva and Abagyan, 2012).

The amino acids inside and outside of the binding region of a pro-
tein have different roles and the thermal instability may result from the
deformation of the 3D structure resulting in deactivation of the binding
site (Lee et al., 2017). Therefore, the computational thermal stability
study was performed separately both inside and outside of the binding
region. COACH, COFACTOR, MetaPocket, CASTp and DoGSiteScorer

servers indicated the amino acids inside the binding region as Glu23,
Phe25, His129, Asn140, Asn185, Glu186, Tyr248, Phe251, Glu285,
Trp361 and Trp371. UniProt data bank showed that exo-β-1,3-gluca-
nases have Glu at positions 217 and 316 in their active sites. In our
model this corresponds to the positions 186 and 285 in the binding
region as panomycocin was modeled after the amino acid sequence (31
aa) just upstream to the KEX2 cleavage site was removed.

Determination of the amino acid substitution positions on the 3D
structure of panomycocin models that would enhance the thermal sta-
bility was performed with GROMOS96 in the SPDBViewer. In addition
to the free energy calculation of the proteins, GROMOS has the ad-
vantage of providing energy minimization to refine the 3D structure of
the proteins. In our case we have substituted an amino acid position
with another amino acid so that refinement of the new structure was
needed to avoid the possible unstable conditions arising from these
mutations (Schmid et al., 2011). Furthermore, as mutations were per-
formed with SPDBViewer, using GROMOS96 inside this viewer made
the study more practical. Ten positions for amino acid substitutions
outside and three positions for amino acid substitutions inside the
binding region, which gave lower energy, were detected. The combi-
nations among these thermostabilizing amino acid substitutions were
also tested as combinations have been reported to have a non-additive
effect on the thermal stability of the protein (Strub et al., 2004).
Modern force fields like GROMOS that are currently used in energy
calculations has some limitations. For example, they rely on a fixed
charge model and atom types (Cournia et al., 2017). As a result, CNA
server, which is rigidity theory-based thermal unfolding simulations of
proteins for linking structure and thermostability, was used to increase
the reliability of the study. In relative to other web servers that allow
performing and analyzing thermal unfolding simulations of proteins,
CNA server provides the most detailed information as it performs rigid
cluster decompositions, simulates thermal unfolding and computes
global and local flexibility indices (Mortazavi and Hosseinkhani, 2011).

Fig. 6. A) The table of the area and the volume for different binding sites of the model. B) The three dimensional structure of the best binding site. C) Binding site
analysis by CASTp server. Green color illustrates the binding site position (Dundas et al., 2006).

Table 1
CNA results of the best thermostabilizing amino acid substitutions inside and outside of the binding region of panomycocin.

Outside the binding region Inside the binding region

Substitutions Non mutated Leu52 Arg Tyr120Arg Gly204Arg Phe223Arg Gly254Arg Phe25Arg Glu186Arg Trp371 Arg

H type 2 (kcal/mol) −4.84 −5.15 -4.84 -4.83 -5.15 -5.15 -4.89 -5.32 -4.78
Melting point (K) 396.74 403.00 396.74 396.68 403.00 405.01 397.72 406.32 395.66

Fig. 7. Surface of the model that was generated for panomycocin and the exact
places of the best amino acid positions that enhanced its thermal stability
(letters in white color indicates the amino acids outside and in orange color
indicates the amino acids inside the binding site). As the color changes from
grey to blue, the hydrophilicity increases.
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By using CNA server, we have determined three (52, 223, 254) outside
and one (186) inside the binding region amino acid substitution posi-
tions among the others that would enhance the thermal stability of the
protein the CNA server gave a consistent result with the energy values
calculated by GROMOS96 in SPDBViewer for all these positions. This
result was also confirmed by using I-Mutant2.0, Eris, AUTO-MUTE and
MUpro servers.

The computational site-directed mutagenesis study showed that the
mutations that highly enhanced the thermal stability of panomycocin
were the substitutions of a residue by arginine (Leu52 Arg, Glu186Arg,
Phe223Arg and Gly254Arg). In several studies it was reported that the
change of hydrophobicity to hydrophilicity of the amino acid residues
on the solvent exposed surface is a good strategy in the thermo-
stabilization of a protein. Thus, substituting a hydrophobic residue by
arginine, which is a positively charged hydrophilic amino acid, is ex-
pected to increase the thermostability of proteins. Strub et al. increased
the stability of acetylcholinesterase by substituting solvent exposed
hydrophobic residues by arginine (Sokalingam et al., 2012). Mortazavi
et al. enhanced the thermostability of firefly luciferases by substituting
solvent exposed hydrophobic residues by arginine (Zhou et al., 2013).
In our study we have substituted the hydrophobic amino acids leucine,
phenylalanine and glycine with arginine and the thermal stability has
been increased by 6.26 K, 6.26 K and 8.27 K respectively. Even sub-
stitutions of hydrophilic residues on the surface by arginine may in-
crease the thermostability of proteins. Sokalingam et al. increased the
stability of green flourescent protein (GFP) by substituting solvent ex-
posed surface lysines by arginines (Zhou et al., 2008). Although lysine
and arginine are both positively charged basic amino acids, the gua-
nidium group of arginine permits interactions in three directions that
enables it to form a higher number electrostatic interactions and its
basic residue has higher pKa that may generate more stable ionic in-
teractions. Zhou et al. increased the thermostability of xylanase II from
Aspergillus usamii E001 by replacing serines and threonines on the sol-
vent exposed surface of the enzyme with arginines (Kumwenda et al.,
2013). When glutamic acid, which has a charged side chain, has been
substituted by arginine, the thermal stability of panomycocin increased
by 9.58 K. Moreover, bioinformatics analysis showed that one of the
most striking features of thermostable proteins is the higher proportion
of arginine in the exposed surfaces (Mclachlan et al., 2008). For ex-
ample, Kumwenda et al. observed high frequency of arginine (on the
surfaces) and alanine (in well buried areas) in thermostable proteins of
Thermus thermophilus HB27 (Cournia et al., 2017). Similarly all the best
thermostabilizing positions are at water exposed surface of panomy-
cocin (Fig. 7). Thus, the results that we have obtained in this study are
in accordance with the computational and experimental studies men-
tioned above that was conducted previously.

The aim of the computational thermal stability work is to design a
thermostable protein without changing its activity. In this study we
have found that the 3D structure and the binding site of panomycocin
has not changed after the substitutions that were performed. Thus, the
mutant protein is expected to bind to the same substrate and show the
same activity with the wild type panomycocin.

5. Conclusion

The 3D structure of panomycocin was predicted with MODELLER
and the best model was optimized and loop modeling was performed.
Verification and validation showed the reliability of the model that was
generated.

Enhancement of the thermal stability of the model was done using
contemporary servers and programs. In the region outside the binding
site Leu52 Arg, Phe223Arg and Gly254Arg were found to be the best
thermostabilizing mutations with 6.26 K, 6.26 K and 8.27 K increases
respectively. In the binding site Glu186Arg was found to be the best
thermostabilizer mutation with a 9.58 K temperature increase.

This mutant exo-β-1,3-glucanase can then be used as a novel

antimycotic/antifungal drug in a liquid formulation for topical appli-
cations over normal body temperatures. The above mentioned methods
can be used in future studies for the detection of the amino acid point
mutations that could increase the thermal stability of similar proteins.

Conflict of interest

The authors declare that there is no conflict of interest in this work.

Acknowledgment

This work was supported by a grant from the Scientific and
Technological Research Council of Turkey (TUBITAK) (Project no:
115Z376).

References

Agarwala, R., Barrett, T., Beck, J., Benson, D.A., Bollin, C., Bolton, E., Bourexis, D.,
Brister, J.R., Bryant, S.H., Canese, K., Charowhas, C., Clark, K., Dicuccio, M.,
Dondoshansky, I., Federhen, S., Feolo, M., Funk, K., Geer, L.Y., Gorelenkov, V.,
Hoeppner, M., Holmes, B., Johnson, M., Khotomlianski, V., Kimchi, A., Kimelman,
M., Kitts, P., Klimke, W., Krasnov, S., Kuznetsov, A., Landrum, M.J., Landsman, D.,
Lee, J.M., Lipman, D.J., Lu, Z., Madden, T.L., Madej, T., Marchler-Bauer, A., Karsch-
Mizrachi, I., Murphy, T., Orris, R., Ostell, J., O’sullivan, C., Panchenko, A., Phan, L.,
Preuss, D., Pruitt, K.D., Rodarmer, K., Rubinstein, W., Sayers, E., Schneider, V.,
Schuler, G.D., Sherry, S.T., Sirotkin, K., Siyan, K., Slotta, D., Soboleva, A., Soussov, V.,
Starchenko, G., Tatusova, T.A., Todorov, K., Trawick, B.W., Vakatov, D., Wang, Y.,
Ward, M., Wilbur, W.J., Yaschenko, E., Zbicz, K., 2016. Database resources of the
national center for biotechnology information. Nucleic Acids Res. 44, D7–D19.
https://doi.org/10.1093/nar/gkv1290.

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.,
1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 25, 3389–3402. https://doi.org/10.1093/nar/25.17.
3389.

Apweiler, R., Martin, M.J., O’Donovan, C., Magrane, M., Alam-Faruque, Y., Antunes, R.,
Barrell, D., Bely, B., Bingley, M., Binns, D., Bower, L., Browne, P., Chan, W.M.,
Dimmer, E., Eberhardt, R., Fazzini, F., Fedotov, A., Foulger, R., Garavelli, J., Castro,
L.G., Huntley, R., Jacobsen, J., Kleen, M., Laiho, K., Legge, D., Lin, Q., Liu, W., Luo,
J., Orchard, S., Patient, S., Pichler, K., Poggioli, D., Pontikos, N., Pruess, M., Rosanoff,
S., Sawford, T., Sehra, H., Turner, E., Corbett, M., Donnelly, M., Van Rensburg, P.,
Xenarios, I., Bougueleret, L., Auchincloss, A., Argoud-Puy, G., Axelsen, K., Bairoch,
A., Baratin, D., Blatter, M.C., Boeckmann, B., Bolleman, J., Bollondi, L., Boutet, E.,
Quintaje, S.B., Breuza, L., Bridge, A., De Castro, E., Coudert, E., Cusin, I., Doche, M.,
Dornevil, D., Duvaud, S., Estreicher, A., Famiglietti, L., Feuermann, M., Gehant, S.,
Ferro, S., Gasteiger, E., Gateau, A., Gerritsen, V., Gos, A., Gruaz-Gumowski, N., Hinz,
U., Hulo, C., Hulo, N., James, J., Jimenez, S., Jungo, F., Kappler, T., Keller, G., Lara,
V., Lemercier, P., Lieberherr, D., Martin, X., Masson, P., Moinat, M., Morgat, A.,
Paesano, S., Pedruzzi, I., Pilbout, S., Poux, S., Pozzato, M., Redaschi, N., Rivoire, C.,
Roechert, B., Schneider, M., Sigrist, C., Sonesson, K., Staehli, S., Stanley, E., Stutz, A.,
Sundaram, S., Tognolli, M., Verbregue, L., Veuthey, A.L., Wu, C.H., Arighi, C.N.,
Arminski, L., Barker, W.C., Chen, C., Chen, Y., Dubey, P., Huang, H., Mazumder, R.,
McGarvey, P., Natale, D.A., Natarajan, T.G., Nchoutmboube, J., Roberts, N.V., Suzek,
B.E., Ugochukwu, U., Vinayaka, C.R., Wang, Q., Wang, Y., Yeh, L.S., Zhang, J., 2011.
Ongoing and future developments at the universal protein resource. Nucleic Acids
Res. 39, 214–219. https://doi.org/10.1093/nar/gkq1020.

Bernal, C., Rodríguez, K., Martínez, R., 2018. Integrating enzyme immobilization and
protein engineering: an alternative path for the development of novel and improved
industrial biocatalysts. Biotechnol. Adv. 36, 1470–1480. https://doi.org/10.1016/j.
biotechadv.2018.06.002.

Bingding, H., 2009. MetaPocket: a meta approach to improve protein ligand binding site
prediction. OMICS 13, 325–330. https://doi.org/10.1089/omi.2009.0045.

Capriotti, E., Fariselli, P., Casadio, R., 2005. I-Mutant2.0: predicting stability changes
upon mutation from the protein sequence or structure. Nucleic Acids Res. 33,
306–310. https://doi.org/10.1093/nar/gki375.

Cavasotto, C.N., Phatak, S.S., 2009. Homology modeling in drug discovery: current trends
and applications. Drug Discov. Today 14, 676–683. https://doi.org/10.1016/j.
drudis.2009.04.006.

Cheng, J., Randall, A., Baldi, P., 2005. Prediction of protein stability changes for single-
site mutations using support vector machines. Proteins Struct. Funct. Bioinf. 62,
1125–1132. https://doi.org/10.1002/prot.20810.

Chou, K.C., Shen, H.B., 2007. Signal-CF: a subsite-coupled and window-fusing approach
for predicting signal peptides. Biochem. Biophys. Res. Commun. 357, 633–640.
https://doi.org/10.1016/j.bbrc.2007.03.162.

Colovos, C., Yeates, T., 1993. Verification of Protein Structures: Patterns of Nonbonded
Atomic Interactions. pp. 1511–1519.

Cournia, Z., Allen, B., Sherman, W., 2017. Relative binding free energy calculations in
drug discovery: recent advances and practical considerations. J. Chem. Inf. Model.
57, 2911–2937. https://doi.org/10.1021/acs.jcim.7b00564.

Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J., 2006. CASTp:
computed atlas of surface topography of proteins with structural and topographical

M.T. Muhammed, et al. Computational Biology and Chemistry 80 (2019) 270–277

276

https://doi.org/10.1093/nar/gkv1290
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/gkq1020
https://doi.org/10.1016/j.biotechadv.2018.06.002
https://doi.org/10.1016/j.biotechadv.2018.06.002
https://doi.org/10.1089/omi.2009.0045
https://doi.org/10.1093/nar/gki375
https://doi.org/10.1016/j.drudis.2009.04.006
https://doi.org/10.1016/j.drudis.2009.04.006
https://doi.org/10.1002/prot.20810
https://doi.org/10.1016/j.bbrc.2007.03.162
http://refhub.elsevier.com/S1476-9271(18)30840-5/sbref0050
http://refhub.elsevier.com/S1476-9271(18)30840-5/sbref0050
https://doi.org/10.1021/acs.jcim.7b00564


mapping of functionally annotated residues. Nucleic Acids Res. 34, 116–118. https://
doi.org/10.1093/nar/gkl282.

Grevesse, C., Lepoivre, P., Jijakli, M.H., 2003. Characterization of the exoglucanase-en-
coding gene PaEXG2 and study of its role in the biocontrol activity of Pichia anomala
strain K. Phytopathology 93, 1145–1152. https://doi.org/10.1094/PHYTO.2003.93.
9.1145.

Guex, N., Peitsch, M.C., 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment
for comparative protein modeling. Electrophoresis 18, 2714–2723. https://doi.org/
10.1002/elps.1150181505.

Hiller, K., Grote, A., Scheer, M., Münch, R., Jahn, D., 2004. PrediSi: prediction of signal
peptides and their cleavage positions. Nucleic Acids Res. 32, 375–379. https://doi.
org/10.1093/nar/gkh378.

Humphrey, W., Dalke, A., Schulten, K., 1996. VMD: visual molecular dynamics. J. Mol.
Graph. 14, 33–38. https://doi.org/10.1016/0263-7855(96)00018-5.

Izgü, F., Altınbay, D., 2004. Isolation and characterization of the K5-Type yeast killer
protein and its homology with an Exo-β-1,3-glucanase. Biosci. Biotechnol. Biochem.
68, 685–693. https://doi.org/10.1271/bbb.68.685.

Izgü, F., Altinbay, D., Sertkaya, A., 2005. Enzymic activity of the K5-type yeast killer toxin
and its characterization. Biosci. Biotechnol. Biochem. 69, 2200–2206. https://doi.
org/10.1271/bbb.69.2200.

Izgü, F., Altinbay, D., Acun, T., 2006. Killer toxin of Pichia anomala NCYC 432; pur-
ification, characterization and its exo-β-1,3-glucanase activity. Enzyme Microb.
Technol. 39, 669–676. https://doi.org/10.1016/j.enzmictec.2005.11.024.

Izgü, F., Altinbay, D., Türeli, A.E., 2007. In vitro susceptibilities of Candida spp. To
Panomycocin, a novel exo-beta-1,3-glucanase isolated from Pichia anomala NCYC
434. Microbiol. Immunol. 51, 797–803. https://doi.org/10.1111/j.1348-0421.2007.
tb03975.x.

Izgü, F., Bayram, G., Tosun, K., Izgü, D., 2017. Stratum corneum lipid liposome-en-
capsulated panomycocin: preparation, characterization, and the determination of
antimycotic efficacy against candida spp. Isolated from patients with vulvovaginitis
in an in vitro human vaginal epithelium tissue model. Int. J. Nanomed. 12,
5601–5611. https://doi.org/10.2147/IJN.S141949.

Khor, B.Y., Tye, G.J., Lim, T.S., Noordin, R., Choong, Y.S., 2014. The structure and dy-
namics of BmR1 protein from Brugia malayi: in silico approaches. Int. J. Mol. Sci. 15,
11082–11099. https://doi.org/10.3390/ijms150611082.

Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A., 2016. Coarse-
grained protein models and their applications. Chem. Rev. 116, 7898–7936. https://
doi.org/10.1021/acs.chemrev.6b00163.

Krieger, Elmar, Nabuurs, Sander B., Vriend, G., 2012. Homology modeling. In: Bourne, E.,
Philip, Weissig, H. (Eds.), Structural Bioinformatics. Wiley-Liss, pp. 507–520. https://
doi.org/10.1007/978-1-61779-588-6.

Krüger, D.M., Rathi, P.C., Pfleger, C., Gohlke, H., 2013. CNA web server: rigidity theory-
based thermal unfolding simulations of proteins for linking structure, (thermo-)sta-
bility, and function. Nucleic Acids Res. 41, 340–348. https://doi.org/10.1093/nar/
gkt292.

Kufareva, I., Abagyan, R., 2012. Methods of protein structure comparison. Methods Mol.
Biol. 857, 231–257. https://doi.org/10.1007/978-1-61779-588-6.

Kumwenda, B., Litthauer, D., Bishop, Ö.T., Reva, O., 2013. Analysis of protein thermo-
stability enhancing factors in industrially important Thermus bacteria species submit
a paper. Evol. Bioinf. 2013, 327–342. https://doi.org/10.4137/EBO.S12539.

Kuntal, B.K., Aparoy, P., Reddanna, P., 2010a. EasyModeller: a graphical interface to
modeller. BMC Res. Notes 3, 226. https://doi.org/10.1186/1756-0500-3-226.

Kuntal, B.K., Aparoy, P., Reddanna, P., 2010b. Easymodeller: a graphical interface to
EasyModeller: a graphical interface to MODELLER. BMC Res. Notes 3, 1–5. https://
doi.org/10.1186/1756-0500-3-226.

Laskowski, R.A., Macarthur, M.W., Moss, D.S., T.J, 1993. PROCHECK: a program to check
the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291. https://
doi.org/10.1107/S0021889892009944.

Lee, J., Konc, J., Janežič, D., Brooks, B.R., 2017. Global organization of a binding site
network gives insight into evolution and structure-function relationships of proteins.
Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-10412-z.

Letunic, I., Doerks, T., Bork, P., 2015. SMART: recent updates, new developments and
status in 2015. Nucleic Acids Res. 43, D257–D260. https://doi.org/10.1093/nar/
gku949.

Masso, M., Vaisman, I.I., 2010. AUTO-MUTE: web-based tools for predicting stability
changes in proteins due to single amino acid replacements. Protein Eng. Des. Sel. 23,
683–687. https://doi.org/10.1093/protein/gzq042.

Mclachlan, M.J., Johannes, T.W., Zhao, H., 2008. Further improvement of phosphite

dehydrogenase thermostability by saturation mutagenesis. Biotechnol. Bioeng.
Bioeng. 99, 268–274. https://doi.org/10.1002/bit.

Mortazavi, M., Hosseinkhani, S., 2011. Design of thermostable luciferases through argi-
nine saturation in solvent-exposed loops. Protein Eng. Des. Sel. 24, 893–903. https://
doi.org/10.1093/protein/gzr051.

Muhammed, M.T., Aki-Yalcin, E., 2018. Homology modeling in drug discovery: overview,
current applications and future perspectives. Chem. Biol. Drug Des. 1–9. https://doi.
org/10.1111/cbdd.13388.

Petersen, T.N., Brunak, S., von Heijne, G., N.H, 2011. SignalP 4.0: discriminating signal
peptides from transmembrane regions. Nat. Methods 8, 785–786.

Pucci, F., Bourgeas, R., Rooman, M., 2016. Predicting protein thermal stability changes
upon point mutations using statistical potentials: introducing HoTMuSiC. Sci. Rep. 6,
1–9. https://doi.org/10.1038/srep23257.

Rose, P.W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A.R., Christie, C.H., Di Costanzo, L.,
Duarte, J.M., Dutta, S., Feng, Z., Green, R.K., Goodsell, D.S., Hudson, B., Kalro, T.,
Lowe, R., Peisach, E., Randle, C., Rose, A.S., Shao, C., Tao, Y.P., Valasatava, Y., Voigt,
M., Westbrook, J.D., Woo, J., Yang, H., Young, J.Y., Zardecki, C., Berman, H.M.,
Burley, S.K., 2017. The RCSB protein data bank: integrative view of protein, gene and
3D structural information. Nucleic Acids Res. 45, D271–D281. https://doi.org/10.
1093/nar/gkw1000.

Roy, A., Yang, J., Zhang, Y., 2012. COFACTOR: an accurate comparative algorithm for
structure-based protein function annotation. Nucleic Acids Res. 40, 471–477. https://
doi.org/10.1093/nar/gks372.

Schmid, N., Allison, J.R., Gunsteren, W.F.Van, 2011. Biomolecular structure refinement
using the GROMOS simulation software. J. Biomol. NMR 51, 265–281. https://doi.
org/10.1007/s10858-011-9534-0.

Shen, H.B., Chou, K.C., 2007. Signal-3L: a 3-layer approach for predicting signal peptides.
Biochem. Biophys. Res. Commun. 363, 297–303. https://doi.org/10.1016/j.bbrc.
2007.08.140.

Sokalingam, S., Raghunathan, G., Soundrarajan, N., Lee, S.-G., 2012. A study on the effect
of surface lysine to arginine mutagenesis on protein stability and structure using
green fluorescent protein. PLoS One 7, e40410. https://doi.org/10.1371/journal.
pone.0040410.

Song, J., Tan, H., Perry, A.J., Akutsu, T., Webb, G.I., Whisstock, J.C., Pike, R.N., 2012.
PROSPER: an integrated feature-based tool for predicting protease substrate cleavage
sites. PLoS One 7. https://doi.org/10.1371/journal.pone.0050300.

Strub, C., Alies, C., Lougarre, A., Ladurantie, C., Czaplicki, J., Fournier, D., 2004.
Mutation of exposed hydrophobic amino acids to arginine to increase protein stabi-
lity. BMC Biochem. 5, 1–6. https://doi.org/10.1186/1471-2091-5-9.

Talluri, S., 2011. Advances in engineering of proteins for thermal stability. Int. J. Adv.
Biotechnol. Res. 2, 190–200.

Van Gunsteren, W.F., B.H.J.C, 2017. The GROMOS Software for (Bio) Molecular
Simulation.The GROMOS Software for (Bio) Molecular Simulation.

Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., Rarey, M., 2012. Combining
global and local measures for structure-based druggability predictions. J. Chem. Inf.
Model. 52, 360–372. https://doi.org/10.1021/ci200454v.

Walker, G.R., 2011. Pichia anomala: cell physiology and biotechnology relative to other
yeasts. Antonie Van Leeuwenhoek 99, 25–34. https://doi.org/10.1007/s10482-010-
9491-8.

Xu, J., Zhang, Y., 2010. How significant is a protein structure similarity with TM-score =
0.5? Bioinformatics 26, 889–895. https://doi.org/10.1093/bioinformatics/btq066.

Yang, J., Roy, A., Zhang, Y., 2013. Protein-ligand binding site recognition using com-
plementary binding-specific substructure comparison and sequence profile align-
ment. Bioinformatics 29, 2588–2595. https://doi.org/10.1093/bioinformatics/
btt447.

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., 2014. The I-TASSER suite: protein
structure and function prediction. Nat. Methods 12, 7–8. https://doi.org/10.1038/
nmeth.3213.

Yin, S., Ding, F., Dokholyan, N.V., 2007. Eris: an automated estimator of protein stability.
Nat. Methods 4, 466–467. https://doi.org/10.1038/nmeth0607-466.

Zhou, X.X., Wang, Y.B., Pan, Y.J., Li, W.F., 2008. Differences in amino acids composition
and coupling patterns between mesophilic and thermophilic proteins. Amino Acids
34, 25–33. https://doi.org/10.1007/s00726-007-0589-x.

Zhou, C., Zhang, M., Wang, Y., Guo, W., Liu, Z., Wang, Y., Wang, W., 2013. Enhancement
of the thermo-alkali-stability of xylanase II from Aspergillus usamii E001 by site-
directed mutagenesis. Afr. J. Microbiol. Res. 7, 1535–1542. https://doi.org/10.5897/
AJMR12.1561.

M.T. Muhammed, et al. Computational Biology and Chemistry 80 (2019) 270–277

277

https://doi.org/10.1093/nar/gkl282
https://doi.org/10.1093/nar/gkl282
https://doi.org/10.1094/PHYTO.2003.93.9.1145
https://doi.org/10.1094/PHYTO.2003.93.9.1145
https://doi.org/10.1002/elps.1150181505
https://doi.org/10.1002/elps.1150181505
https://doi.org/10.1093/nar/gkh378
https://doi.org/10.1093/nar/gkh378
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1271/bbb.68.685
https://doi.org/10.1271/bbb.69.2200
https://doi.org/10.1271/bbb.69.2200
https://doi.org/10.1016/j.enzmictec.2005.11.024
https://doi.org/10.1111/j.1348-0421.2007.tb03975.x
https://doi.org/10.1111/j.1348-0421.2007.tb03975.x
https://doi.org/10.2147/IJN.S141949
https://doi.org/10.3390/ijms150611082
https://doi.org/10.1021/acs.chemrev.6b00163
https://doi.org/10.1021/acs.chemrev.6b00163
https://doi.org/10.1007/978-1-61779-588-6
https://doi.org/10.1007/978-1-61779-588-6
https://doi.org/10.1093/nar/gkt292
https://doi.org/10.1093/nar/gkt292
https://doi.org/10.1007/978-1-61779-588-6
https://doi.org/10.4137/EBO.S12539
https://doi.org/10.1186/1756-0500-3-226
https://doi.org/10.1186/1756-0500-3-226
https://doi.org/10.1186/1756-0500-3-226
https://doi.org/10.1107/S0021889892009944
https://doi.org/10.1107/S0021889892009944
https://doi.org/10.1038/s41598-017-10412-z
https://doi.org/10.1093/nar/gku949
https://doi.org/10.1093/nar/gku949
https://doi.org/10.1093/protein/gzq042
https://doi.org/10.1002/bit
https://doi.org/10.1093/protein/gzr051
https://doi.org/10.1093/protein/gzr051
https://doi.org/10.1111/cbdd.13388
https://doi.org/10.1111/cbdd.13388
http://refhub.elsevier.com/S1476-9271(18)30840-5/sbref0185
http://refhub.elsevier.com/S1476-9271(18)30840-5/sbref0185
https://doi.org/10.1038/srep23257
https://doi.org/10.1093/nar/gkw1000
https://doi.org/10.1093/nar/gkw1000
https://doi.org/10.1093/nar/gks372
https://doi.org/10.1093/nar/gks372
https://doi.org/10.1007/s10858-011-9534-0
https://doi.org/10.1007/s10858-011-9534-0
https://doi.org/10.1016/j.bbrc.2007.08.140
https://doi.org/10.1016/j.bbrc.2007.08.140
https://doi.org/10.1371/journal.pone.0040410
https://doi.org/10.1371/journal.pone.0040410
https://doi.org/10.1371/journal.pone.0050300
https://doi.org/10.1186/1471-2091-5-9
http://refhub.elsevier.com/S1476-9271(18)30840-5/sbref0230
http://refhub.elsevier.com/S1476-9271(18)30840-5/sbref0230
http://refhub.elsevier.com/S1476-9271(18)30840-5/sbref0235
http://refhub.elsevier.com/S1476-9271(18)30840-5/sbref0235
https://doi.org/10.1021/ci200454v
https://doi.org/10.1007/s10482-010-9491-8
https://doi.org/10.1007/s10482-010-9491-8
https://doi.org/10.1093/bioinformatics/btq066
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1038/nmeth.3213
https://doi.org/10.1038/nmeth.3213
https://doi.org/10.1038/nmeth0607-466
https://doi.org/10.1007/s00726-007-0589-x
https://doi.org/10.5897/AJMR12.1561
https://doi.org/10.5897/AJMR12.1561

	Three dimensional structure prediction of panomycocin, a novel Exo-β-1,3-glucanase isolated from Wickerhamomyces anomalus NCYC 434 and the computational site-directed mutagenesis studies to enhance its thermal stability for therapeutic applications
	Introduction
	Materials and methods
	Determination of the signal peptide and the KEX2 cleavage site
	Homology modeling
	Comparison of the generated models
	Loop modeling
	Optimization, verification and validation

	Determination of binding site
	Determination of the appropriate sites on the models that would improve the thermal stability

	Results
	Determination of the signal peptide and the KEX2 cleavage site
	Homology modeling
	Determination of the best model
	Loop modeling
	Optimization, verification and validation of the models

	Binding site determination
	Determination of the appropriate sites that would improve the thermal stability

	Discussion
	Conclusion
	Conflict of interest
	Acknowledgment
	References




