Journal of Molecular Structure 1218 (2020) 128454

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

FTIR, Raman and DFT studies on 2-[4-(4-ethylbenzamido)phenyl] benzothiazole and 2-[4-(4-nitrobenzamido)phenyl]benzothiazole supported by differential scanning calorimetry

Ozan Unsalan ^{a, *}, Hatice Arı ^b, Cisem Altunayar-Unsalan ^c, Kayhan Bolelli ^d, Mustafa Boyukata ^e, Ismail Yalcin ^d

^a Ege University, Faculty of Science, Department of Physics, 35100, Bornova, Izmir, Turkey

^b Yozgat Bozok University, Faculty of Art and Sciences, Chemistry Department, 66200, Yozgat, Turkey

^c Ege University, Central Research Testing and Analysis Laboratory Research and Application Center, 35100, Bornova, Izmir, Turkey

^d Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Tandoğan, 06100, Ankara, Turkey

^e Yozgat Bozok University, Faculty of Art & Sciences, Physics Department, 66200 Yozgat, Turkey

ARTICLE INFO

Article history: Received 30 April 2020 Received in revised form 13 May 2020 Accepted 13 May 2020 Available online 16 May 2020

Keywords: 2-[4-(4-Ethylbenzamido)phenyl] benzothiazole 2-[4-(4-Nitrobenzamido)phenyl] benzothiazole Raman FTIR DSC DFT drug likeness

ABSTRACT

Molecular structures and vibrational wavenumbers of 2-[4-(4-ethylbenzamido)phenyl]benzothiazole (BSN-009) and 2-[4-(4-nitrobenzamido)phenyl]benzothiazole (BSN-011) were determined by quantum chemical calculations, Infrared and Raman spectroscopic techniques. Vibrational modes were assigned by potential energy distributions (PED). Potential energy scan and conformational analysis were performed. Energy gap, ionization potential, electron affinity and electronegativity descriptors have been obtained from frontier molecular orbitals (HOMO and LUMO). Molecular electrostatic potential (MEP) surfaces have also been plotted for predicting the chemical reactivity of both compounds. Additionally, Mulliken atomic charges were discussed. All calculations were performed by Density Functional Theory (DFT) with B3LYP exchange correlation functional and 6-311++G(d,p) basis set. Moreover, based on the drug likeliness descriptors and bioactivity scores of these compounds, it was found that BSN-011 could be a good drug candidate. By using Differential Scanning Calorimetry (DSC), melting points of the compounds were obtained and the purities were calculated with van't Hoff equation.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Heterocyclic compounds have been an interesting field in medicinal chemistry. A number of heterocyclic derivatives containing sulfur and nitrogen atom serve as a unique scaffolds for experimental drug design [1]. In the last decades, the microbial resistance has developed consequently a substantial medical need for new classes of antibacterial agents are in extreme demand, despite progress in public health care, hospital care and availability of powerful antibiotics [2]. Benzothiazoles are fused member rings, which contain the heterocycles bearing thiazole, showing numerous biological activities such as antimicrobial [3–10], topical carbonic anhydrase inhibitor [11], anticancer [12–21], anthelmintic

E-mail address: physicistozan@gmail.com (O. Unsalan).

[22], a cyclooxygenase inhibitor [23], antitubercular [24,25] and anti-diabetic [26] activities. Currently, synthesized benzothiazole containing compound, lysylamide of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole had been tested for phase 1 clinical evaluation as an antitumor agent [14]. The synthesis of several 2substitutedbenzothiazole derivatives as the antimicrobial agents has been previously reported [10,27-29]. In these studies, according to Yildiz-Oren et al. [10], the synthesized compounds were found to have inhibitory effect with minimum inhibitory concentration (MIC) value of 3.12-50 µg/ml against some of Gram-positive bacteria, Gram-negative bacteria and Candida albicans as yeast. Among the tested compounds, 2-(phenoxymethyl)benzothiazole was found as the most active derivative at a MIC value of $3.12 \,\mu g/ml$ against the tested Staphylococcus aureus [10]. Furthermore, according to Bolelli et al., the synthesized benzothiazole derivatives were in vitro tested for antibacterial activity against Gram-negative

^{*} Corresponding author. Tel.: +90 2323112380.

bacteria, Gram-positive bacteria, and the antifungal activity as yeast. 2-[4-(4-Methoxyphenylacetamido)phenyl]benzothiazole was found the most active at a MIC value of 6.25 µg/ml against the tested*Pseudomonas aeruginosa*isolate [27].

For more than two decades, a great number of publications [30–39] deal with the quantum chemistry calculations have been applied on many compounds and these calculations play an important role in understanding the action mechanism of molecules, especially when they are candidates for potential drugs. Indeed, there are many studies which reveal new compounds and their structures by various spectroscopic, particularly Infrared and Raman spectroscopy, and structural studies. For example, in a work combining these two vibrational spectroscopic techniques together with molecular modelling study, an anticonvulsant agent was elucidated in order to better understand the epilepsy disease [40]. An anti-cancer drug, Combretastatin A-4 was also investigated by Density Functional Theory (DFT) and Surface Enhanced Raman Spectroscopy (SERS) technique and it was found out that this drug has two non-identical conformations [41]. Five platinum-based drugs, cisplatin, carboplatin, nedaplatin, oxaliplatin and heptaplatin were investigated by Infrared and Raman spectroscopy techniques and similarities and differences between their electronic structures were compared in order to better understand their nature. Authors also calculated harmonic vibrational spectra for dimers of these drugs except heptaplatin and showed that harmonic dimer vibrational spectra of cisplatin and nedaplatin were in better agreement with experiment than anharmonic computations of the monomers [42]. Vibrational properties of antiepileptic drug topiramate were studied by Fourier Transform Infrared (FTIR). Fourier Transform Raman (FT-Raman), X-Ray Diffraction (XRD) and DFT methods and observed bands were tentatively assigned for crystalline topiramate [43]. On the other hand, conformational analysis gives detailed information of various orientations of compounds and these conformations take place in their activity profiles. Conformational analysis and both experimental and theoretical computational study performed on borreverine, antimalarial natural product, revealed that this compound has two lowest energy conformers indeed confirmed by the observed bands in their Raman spectra [44].

Differential Scanning Calorimetry (DSC) is a sensitive technique to investigate the thermotropic properties of drugs as well as many different compounds. Recently, it has been utilized to determine drugs' purity, type of binding interaction, drugs' stability, conformation and polymorphism. For example, an antiparasitic drug praziquantel and its interaction with calcium carbonate was studied by DSC technique and it was shown that praziguantel prefers anti conformation rather than syn conformation and this multiconformational preference was also confirmed with the Infrared spectrum of the compound [45]. In a paper which investigates the polymorphism of Anti-HIV drug Efavirenz, polymorphs of this drug were compared by DSC together with complementary vibrational spectroscopic techniques and it was shown that one certain polymorph can be an excellent candidate for pharmaceutical formulations [46]. Dehydration, melting and crystallization profiles of carbamazepine (CBZ) were discussed in detail by DSC in terms of CBZ's polymorphs III and I and a detailed thermal pathway for the decomposition of CBZ were proposed. Authors also showed that the melting point of CBZ near temperatures of 200 °C indicated that Form I is the most stable [47]. In another study, thermal behavior of antihypertensive drug doxazosin mesilate was investigated by using DSC and the degree of purity of this drug was found to be similar as obtained by High Performance Liquid Chromatography (HPLC) [48]. Furthermore, in order to characterize and evaluate the biological activity of an anti-inflammatory drug meloxicam, DSC was used for the thermal analysis and melting points of two different polymorphs of meloxicam were observed at 260.12 and 261.50 °C for Form I and III, respectively [49].

In spite there are many efforts on drug design for clinical use, only a few drugs appeared as successful clinical use. Thus, in order to design novel and potentially active compounds as good candidate drugs, it is highly crucial to investigate their electronic structures and further reveal their molecular mechanism of interaction. Although there are numerous studies on benzothiazole derivatives investigated by quantum chemical calculations [37,50-57] due to their biological importance, there are still lack of studies on 2-[4-(4ethylbenzamido)phenyl]benzothiazole (BSN-009) and 2-[4-(4nitrobenzamido)phenyl]benzothiazole (BSN-011) (Fig. 1) in the literature to the best of our knowledge. For this reason, the main purpose of this research is to further investigate molecular structures of the title compounds by various analytical techniques to evaluate their potentials to be used as new drugs. Here, we report detailed vibrational spectroscopic (FTIR and Raman), calorimetric and DFT studies on BSN-009 and BSN-011 for giving any new perspectives for future studies, for the first time. Conformational analyses, (Highest Occupied Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO)) and Molecular Electrostatic Potential (MEP) results were also reported for both compounds.

2. Experiments and theoretical methods

2.1. Fourier Transform Infrared spectroscopy

Approximately 5–10 mg solid powder samples of each compounds were placed on the diamond crystal of Attenuated Total Reflection (ATR) of the PerkinElmer Spectrum Two FTIR spectrometer (PerkinElmer Inc., Waltham, MA, USA) equipped with deuterium triglycide sulphide (DTGS) detector. All spectra were recorded in the range of 4000-400 cm⁻¹ with an average of 32 scans and spectral resolution of 1 cm⁻¹. All experiments were carried out at ambient temperature. The spectra were corrected from water and carbon dioxide contributions. ATR diamond crystal was cleaned with ultra-pure isopropyl alcohol prior to each sample and a background spectrum was taken by recording a clean and dry ATR crystal against air. The spectra were analyzed using PerkinElmer Spectrum Version 10.5.4. software (PerkinElmer Inc., Waltham, MA, USA).

2.2. Raman spectroscopy

Approximately 5–10 mg solid powder samples of each compounds were used to record Raman spectra on Renishaw InVia Raman spectrometer equipped with 785 nm red laser excitation line in the 4000-100 cm⁻¹ region with 0.6 cm⁻¹ resolution with a diode laser of 3.1 μ m estimated laser spot size. Magnification was 50× *via* microscope. Slit aperture was 20 μ m and 32 accumulations for each measurement were applied. For the calibration of the Raman spectrometer, silicon wafer (520.7 \pm 0.5 cm⁻¹) was used. Detector was cooled to -70 °C thermoelectrically by peltier. CCDs are suitable for analysis of the inherently weak Raman signal and give the best possible sensitivity, uniformity and noise characteristics. The power of the incident laser requires to be low enough to avoid overheating and possible degradation.

2.3. Differential Scanning Calorimetry

Approximately 1.5 mg of samples from both compounds were encapsulated in standard aluminum hermetic DSC pans. Empty aluminum standard hermetic DSC pan was used as a reference pan for each sample separately. TA Q20 DSC (TA Instruments Inc., New

Fig. 1. Molecular structures of BSN-009 and BSN-011.

Castle, Delaware, USA) instrument was used with heating rates of 10 °C/min starting from 0 °C to 500 °C in nitrogen atmosphere with a flow rate of 50 mL/min. The DSC data were analyzed using Universal V4.5A TA Instruments software.

In a system which contains impurities, van't Hoff equation approximately holds and allows the purity value to be calculated as follows:

$$T_f = T_0 - \left[\left(\frac{RT_0^2 X}{\Delta H_f} \right) \cdot \frac{1}{F} \right]$$

where T_f is the melting temperature of the sample, T_0 is the melting point of pure substance in Kelvin (K), R is the gas constant, ΔH_f is the heat of fusion, F is the fraction melted and X is the mole fraction of impurities [48]. This technique also facilitates the design of new potential drugs or provide improvements of existing compounds [58].

2.4. DFT theoretical calculations

All calculations on BSN-009 and BSN-011 were performed *via* Gaussian09 quantum chemistry software [59], using DFT/B3LYP functional with 6-311++G(d,p) basis set. Optimized geometries, HOMO-LUMO and MEP from output files of calculations were visualized with Gauss View 5.0 program [60]. Vibrational mode assignments were done using Potential Energy Distribution (PED) analysis implemented in VEDA4 [61] software. Obtained harmonic vibrational wavenumbers were scaled by a single factor of 0.9780 in order to overcome systematic shortcomings of the applied methodology. No double scale factors, different scale factors before and after approximately 1800 cm⁻¹, were used for any of calculations [31,33,34]. Theoretical calculations were used to simulate both IR and Raman spectra of both compounds.

3. Results

3.1. Theoretical studies

3.1.1. Potential energy scan and conformational analyses Atom numbering and the molecular structures of BSN-009 and

BSN-011 were given together in Fig. 1 to make comparison. Rotations around the single bonds give rise to energy minima. The structures obtained from the minima are re-optimized and identical structures were eliminated to get possible conformational isomers of BSN-009 and BSN-011. Relaxed scans for the torsional angles of $\tau(S_7C_8C_{10}C_{11})$, $\tau(C_{12}C_{13}N_{16}C_{17})$, $\tau(C_{13}N_{16}C_{17}C_{19}),$ $\tau(N_{16}C_{17}C_{19}C_{20}), \tau(C_{21}C_{22}C_{39}C_{42})$ and $\tau(C_{22}C_{39}C_{42}H_{43})$ for BSN-009 and $\tau(S_7C_8C_{10}C_{11}),$ $\tau(C_{12}C_{13}N_{16}C_{17}),$ $\tau(C_{13}N_{16}C_{17}C_{19}),$ $\tau(N_{16}C_{17}C_{19}C_{20})$, and $\tau(C_{21}C_{22}N_{39}O_{40})$ for BSN-011, respectively were performed in 0–360° range in 4° increments using B3LYP/ 6-311++G(d,p) given in Fig. S1. In order to get the most stable conformers, the potential energy scan results were employed as in previous studies [60-62]. Six and four stable conformers were obtained for BSN-009 and BSN-011, respectively. These conformers were depicted in Fig. 2 and Fig. 3.

Total energies, relative energies and dipole moments for the conformers of BSN-009 and BSN-011 were given in Table 1. The structures in which the carbonyl oxygen of the benzamido group and the sulfur atom of the benzothiazole group are in *trans* conformer were obtained as the most stable conformers for the two compounds. The geometric parameters of the lowest energy conformers, BSN-009 (1) and BSN-011 (1), were tabulated in Table S1 and Table S2 (Supplementary Data), respectively.

3.1.2. Molecular properties from orbital energies

Highest Occupied Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO) and their energy gaps are quite informative parameters in quantum chemistry. HOMO represents donation ability of an electron, whereas LUMO is descriptive for electron acceptor ability [62]. In general, positive phase corresponds to red in color and negative to green. It is known that the HOMO energy (E_{HOMO}) is related to the ionization potential (IP), where given by equation IP = $-E_{HOMO}$ (Koopmans' theorem [63]) and LUMO energy (E_{LUMO}) has been used to estimate the electron affinity where defined as EA = $-E_{LUMO}$, then the average value of the energies is related to the electronegativity given by the equation $\chi = (IP + EA)/2$ as defined by Mulliken [64].

Calculated HOMO and LUMO energies, HOMO-LUMO energy gaps and some main descriptors for the conformers of both compounds were given in Table 2. The energy gap of BSN-009 (1) is greater than BSN-011 (1), while the ionization potential, electron

Fig. 2. The optimized conformer structures of BSN-009.

Fig. 3. The optimized conformer structures of BSN-011.

BSN-011.

Table 1					
Total energies,	relative energies and d	lipole moments for	the conformers of	of BSN-009 an	ıd

Parameters	BSN-009 (1)	BSN-009 (2)	BSN-009 (3)	BSN-009 (4)	BSN-009 (5)	BSN-009 (6)
Energy (kcal/mol) Rel. Energy (kcal/mol) Dipole moment (Debye)	-899222.3401 0.0000 1.7725	-899222.3237 0.0164 1.8340	-899221.9187 0.4214 5.0809	-899221.9057 0.4344 4.9768	-899218.1461 4.1940 6.1864	-899218.0267 4.3134 5.9572
Energy (kcal/mol) Rel. Energy (kcal/mol) Dipole moment (Debye)	BSN-011 (1) -978232.3390 0.0000 9.2845	BSN-011 (2) -978231.9379 0.4012 9.9760	BSN-011 (3) -978228.3950 3.9441 7.3040	BSN-011 (4) -978228.1962 4.1428 8.8648		

affinity and electronegativity values of BSN-011 (1) are higher than BSN-009(1). The molecular orbital shapes of BSN-009 (1) and BSN-011 (1) were presented in Fig. 4. As seen from the figure, the LUMO is mostly located over the entire molecule (especially nitrobenzene part for BSN-011), while the HOMO is more located on

benzothiazole (A,B) part (mostly sulfur atom), phenyl (C) ring, N–H and C=O groups.

3.1.3. Molecular Electrostatic Potential (MEP) analysis MEP surfaces visually indicate positive, negative and neutral

Parameters	BSN-009(1)	BSN-009 (2)	BSN-009 (3)	BSN-009 (4)	BSN-009 (5)	BSN-009 (6)		
HOMO energy	-0.1356	-0.1355	-0.1993	-0.1993	-0.1988	-0.1356		
LUMO energy	-0.0487	-0.0489	-0.1772	-0.1772	-0.1798	-0.0487		
HOMO-LUMO energy gap	0.0869	0.0866	0.0221	0.0221	0.0190	0.0870		
Ionization potential	0.1356	0.1355	0.1993	0.1993	0.1988	0.1356		
Electron affinity	0.0487	0.0489	0.1772	0.1772	0.1798	0.0487		
Electronegativity	0.0921	0.0922	0.1882	0.1882	0.1893	0.0921		
	BSN-011 (1)	BSN-011 (2)	BSN-011 (3)	BSN-011 (4)				
HOMO energy	-0.1475	-0.1474	-0.1536	-0.1534				
LUMO energy	-0.1111	-0.1111	-0.1106	-0.1092				
HOMO-LUMO energy gap	0.0364	0.0363	0.0430	0.0442				
Ionization potential	0.1475	0.1474	0.1536	0.1534				
Electron affinity	0.1111	0.1111	0.1106	0.1092				
Electronegativity	0.1293	0.1293	0.1321	0.1313				

Fig. 4. The frontier molecular orbitals of BSN-009 (1) and BSN-011 (1).

electrostatic potential regions in terms of color grading as well as relative polarity of a molecule [65]. The different colors on the MEP surfaces of compound represent distinctive electrostatic potential regions (i.e., red for electron rich (partially negative charge); blue for electron deficient (partially positive charge); light blue for slightly electron deficient; yellow for slightly electron rich and green for neutral).

The MEP shapes of BSN-009(1) and BSN-011(1) were plotted in Fig. 5. The color codes of these maps are in the ranges between -0.131 a.u. (red) to 0.131 a.u. (blue) for BSN-009 and -0.152 a.u. (red) to 0.152 a.u. (blue) for BSN-011 calculated by DFT method. The electron deficient blue regions which are responsible for nucleophilic reactivity of the title compounds are located over N-H groups (mainly N₉-H₂₉). The electron rich red regions which are responsible for electronegativity of the two benzothiazole derivate are mostly located over the oxygen atoms. Red region count is higher in BSN-011 than BSN-009. This is because the electronegativity of the BSN-011, which has three oxygen atoms, is greater than BSN-009 which has only one oxygen atom (as seen in Table 2). The slightly electron deficient light blue regions for both compounds are located over thiazole ring. The slightly electron rich yellow region over the phenyl ring can be considered as the sites for electrophilic attacks.

3.1.4. Mulliken charges

Mulliken atomic charges are of importance in quantum chemical calculations since dipole moment, polarizability and electronic structure are highly affected by atomic charges. Calculated Mulliken charges were tabulated in Table 3. In order to further understand the Mulliken charges, a plot of charges versus atomic numbers was prepared in Fig. 6. According to the results, all hydrogen atoms in both compounds have positive charges and the hydrogen atom with the largest positive charge among them is H_{29} (the sequence of hydrogen atoms with high positive charges; H_{29} > H_{31} > H_{35} > H_{34}). In addition, it is seen that C_1 (1.214) atom for BSN-009 and C_{10} (1.051) atom for BSN-011 have higher Mulliken atomic charges than other positive atoms. Mulliken atomic charge values of C_3 (-0.657) for BSN-009 and C_{22} (-0.624) atoms for BSN-011 were found to be highly negative values.

3.1.5. Drug likeliness properties and bioactivity scores

Very well-known Lipinski's rule of five [66–68] plays a major role in drug discovery and is of importance in estimating the bioavailability of compounds to reveal drug likeness properties. In our study, physicochemical properties of BSN-009 and BSN-011 were investigated by Molinspiration Cheminformatics online platform which calculates molecular properties and bioactivity score [69].

In order to begin Molinspiration work, DFT output files of both compounds were converted to standard SMILES codes by Open Babel software [70]. Afterwards, these SMILES codes were transferred to Molinspiration platform to draw their 2-dimensional structures and related properties were calculated. Corresponding SMILES codes and the drug likeness of both compounds in our work were presented in Table 4. As it is known that Lipinski's rule of five should satisfy following physicochemical characteristics: (i) clogP \leq 5; (ii) Molecular weight (MW) \leq 500 g/mol; (iii) number of hydrogen bond acceptors (HBA) (sum of N and O atoms) \leq 10, (iv) number of hydrogen bond donors (HBD) (sum of OH and NH groups) \leq 5. Other related criteria were added later by Veber et al. [71] are (v) number of rotatable bonds (nRotb) \leq 10, (vi) topological polar surface area (TPSA) < 140 Å². According to Table 4, number of

Fig. 5. The MEP maps of BSN-009 (1) and BSN-011 (1).

Table 3

Mulliken atomic charges of BSN-009 (1) and BSN-011 (1).

8		. ,			
BSN-009 (1)					
C1	1.214	N ₁₆	0.080	H ₃₁	0.272
C ₂	-0.334	C ₁₇	-0.186	H ₃₂	0.151
C ₃	-0.657	O ₁₈	-0.296	H ₃₃	0.113
C ₄	-0.369	C ₁₉	0.595	H ₃₄	0.203
C ₅	-0.153	C ₂₀	-0.139	H ₃₅	0.208
C ₆	-0.308	C ₂₁	-0.553	H ₃₆	0.170
S ₇	-0.547	C ₂₂	0.832	H ₃₇	0.171
C ₈	0.211	C ₂₃	-0.455	H ₃₈	0.139
N ₉	0.211	C ₂₄	-0.500	C ₃₉	-0.322
C ₁₀	1.025	H ₂₅	0.177	H ₄₀	0.151
C ₁₁	-0.236	H ₂₆	0.163	H ₄₁	0.152
C ₁₂	-0.356	H ₂₇	0.169	C ₄₂	-0.626
C ₁₃	-0.546	H ₂₈	0.147	H ₄₃	0.136
C ₁₄	-0.325	H ₂₉	0.314	H44	0.145
C ₁₅	-0.426	H ₃₀	0.039	H ₄₅	0.146
BSN-011 (1)					
C ₁	0.845	C ₁₅	-0.449	H ₂₉	0.350
C ₂	0.113	N ₁₆	0.089	H ₃₀	0.020
C ₃	-0.591	C ₁₇	-0.103	H ₃₁	0.288
C ₄	-0.359	O ₁₈	-0.286	H ₃₂	0.157
C ₅	-0.203	C ₁₉	0.761	H ₃₃	0.113
C ₆	-0.350	C ₂₀	-0.276	H ₃₄	0.201
S ₇	-0.554	C ₂₁	-0.090	H ₃₅	0.228
C ₈	0.242	C ₂₂	-0.624	H ₃₆	0.251
N ₉	0.199	C ₂₃	-0.014	H ₃₇	0.252
C ₁₀	1.051	C ₂₄	-0.370	H ₃₈	0.162
C ₁₁	-0.230	H ₂₅	0.184	N ₃₉	-0.180
C ₁₂	-0.340	H ₂₆	0.166	O ₄₀	-0.008
C ₁₃	-0.570	H ₂₇	0.174	O ₄₁	-0.008
C ₁₄	-0.384	H ₂₈	0.144		

■BSN-009(1) ■BSN-011(1)

Fig. 6. Mulliken's plot of BSN-009 (1) and BSN-011 (1).

Table 4
Drug likeliness descriptor of BSN-009 and BSN-011 predicted from Molinspiration.

Descriptors	BSN-009	BSN-011
Hydrogen bond donor (HBD)	2	2
Hydrogen bond acceptor (HBA)	3	6
Partition coefficient (Mi logP)	5.42^{a}	4.46
Molecular weight (MW)	359.47	376.42
Topological polar surface area (TPSA) (Å ²) [74]	41.12	86.95
Number of atoms	26	27
Number of rotatable bonds [73]	4	4
Number of violations	1 ^a	0
Bioactivity Scores		
GPCR (G protein-coupled receptor) ligand	-0.23	-0.36
Ion channel modulator	-0.28	-0.32
Kinase inhibitor	-0.30	-0.38
Nuclear receptor ligand	-0.36	-0.47
Protease inhibitor	-0.15	-0.28
Enzyme inhibitor	-0.13	-0.23

SMILES code for BSN-009: c12c(cccc1)N[C](S2)c1ccc(cc1)NC(=0)c1ccc(cc1)CC. SMILES code for BSN-01: c12c(cccc1)N[C](S2)c1ccc(cc1)NC(=0)c1ccc(cc1)N(=0)=0.

^a Partition coefficient violates rule of five and was given in *italics* on purpose.

HBD were found to be 2 (\leq 5) for both compounds. Number of HBA were found to be 3 and 6, for BSN-009 and BSN-011 (\leq 10), respectively. MW of BSN-009 was determined to be 359.47 g/mol, whereas 376.42 g/mol for BSN-011. van der Waals TPSA values obtained for BSN-009 and BSN-011 were 41.12 and 86.95 Å², respectively.

The bioactivity scores calculated for GPCR ligand, ion channel modulator, kinase inhibitor, nuclear receptor ligand, protease inhibitor and enzyme inhibitor were -0.23, -0.28, -0.30, -0.36, -0.15, -0.13 for BSN-009 and -0.36, -0.32, -0.38, -0.47, -0.28 and -0.23 for BSN-011 were also presented in Table 4.

3.2. Vibrational spectroscopic studies

Both compounds contain benzothiazole moieties, phenyl and benzamido parts and belong to C_1 point group symmetry. BSN-009 and BSN-011 consist of 45 and 41 atoms, respectively which have 129 and 117 normal modes of vibrations. In Table 5 and Table 6, computed vibrational wavenumbers were given with the

experimental data for BSN-009 and BSN-011, respectively. In Fig. 7 and Fig. 8, experimental and calculated IR and Raman spectra of BSN-009 and BSN-011 were shown, respectively. Theoretical IR spectra for the compounds were scaled with 0.978. When comparing theoretical results with experimental ones, it should also be noted that only contributions more than 10% calculated by PED were evaluated for δ CCH in-plane bending modes (Tables 5–6) (see Figs. 9 and 10).

3.2.1. Stretching modes

3.2.1.1. N–H stretching modes. Vibrational wavenumber for N–H stretching mode of a benzothiazole derivate was reported at 3351 cm⁻¹ in our previous study [37]. Observed bands at 3347 and 3303 cm⁻¹ in IR spectra were assigned to N₉–H₂₉ and N₁₆–H₃₄ stretching modes which agrees with the literature. The N₉–H₂₉ stretching modes were calculated at 3568 cm⁻¹ and 3571 cm⁻¹ for BSN-009 and BSN-011, respectively. The N₁₆–H₃₄ stretching modes were calculated at 3541 cm⁻¹ for BSN-009 and BSN-011, no Raman spectrum for BSN-009 and BSN-011, no Raman active bands were observed experimentally for this mode. Since the N₉–H₂₉ bond is shorter than the N₁₆–H₃₄ bond (as seen in Tables S1 and S2), the N₉–H₂₉ stretching vibrational mode were calculated at a higher frequency than the N₁₆–H₃₄ stretching mode.

3.2.1.2. C-H stretching modes. C-H stretching mode of aromatic ring occurs above 3000 cm^{-1} , whereas this mode for aliphatic chain occurs below 3000 cm⁻¹. Aromatic C–H stretching modes were observed at 3170, 3112 and 3054 cm⁻¹ in IR spectrum and calculated in the 3169-3077 cm⁻¹ region for BSN-009 in experiment. The aliphatic C–H stretching vibrations for ethyl group were calculated in the region 3028-2959 cm^{-1} for BSN-009 in this study, while they were observed at 3032-2932 cm⁻¹. The aliphatic C–H stretching modes were observed at 3178, 3111 and 3065 cm⁻¹ in IR spectrum and calculated in the 3171-3080 cm^{-1} for BSN-011 (Table 6). Unlike BSN-011, BSN-009, which has an ethyl group, has extra aliphatic C-H stretching modes (vCH₂ and vCH₃). C-H stretching modes for both compounds were not Raman active, thus these modes were not observed in corresponding Raman spectra and their Raman spectra were only presented in the region of 1700-100 cm⁻¹ in Figs. 7 and 8.

Table 5	
Vibrational wavenumbers and	assignments for BSN-009.

Raman Infrared PED (%) ^{Cd}		PED (%) ^{c,d}				
No.	Exp. ^a	Calc. ^a	Exp.	Calc.		
	Eub.	curer	Dilp:	Unscld. ^a	Scld. ^{b,a}	
1	_	3349	3347	3649	3568	$vNH(100) N_0 - H_{20}(B)$
2	_	3304	3303	3624	3544	$vNH(100) N_{16} - H_{24}$
3	_	3169	3170	3240	3169	$vCH(98)C_{12}-H_{31}(C)$
4	-	-	-	3199	3128	vCH(96) C ₂₀ -H ₃₅ ,C ₂₁ -H ₃₆ (D)
5	-	-	-	3197	3127	vCH(92) C ₆ -H ₂₅ ,C ₅ -H ₂₆ ,C ₄ -H ₂₇ ,C ₃ -H ₂₈ (A)
6	-	3115	3112	3186	3116	$vCH(96) C_3 - H_{28}, C_4 - H_{27}, C_6 - H_{25} (A)$
/	-	-	_	31/8 2176	3108	$v(H(99) C_3 - H_{28}, C_5 - H_{26}, C_6 - H_{25}(A)$
0 9	_	5100	_	3170	3100	$v_{CH}(90) t_{14} - t_{32} t_{15} - t_{73} (C)$
10	_	_	_	3169	3100	$V_{CH}(50)$ (23 - 13), (24 - 13), (27 - 13
11	_	3097	_	3162	3092	$VCH(98) C_{11}-H_{30}C_{12}-H_{31}(C)$
12	_	3088	_	3158	3089	vCH(96) C ₂₁ -H ₃₆ ,C ₂₀ -H ₃₅ (D)
13	-	-	-	3152	3083	vCH(100) C ₂₃ -H ₃₇ ,C ₂₄ -H ₃₈ (D)
14	-	3052	3054	3146	3077	$vCH(90) C_{14}-H_{32}, C_{15}-H_{33} (C)$
15	_	3034	3032	3097	3028	vCH(88) C ₄₂ -H ₄₄ , C ₄₂ -H ₄₅ + $vCH(11)$ C ₃₉ -H ₄₀ , C ₃₉ -H ₄₁
10	_	3025	3032	3091	3023 2001	$V_{CH}(98) L_{42} = H_{43}L_{42} = H_{44}L_{42} = H_{45}$
18	_	2962	2959	3027	2961	$v_{CH(95)}$ c_{29} -140 c_{29} -141 $+v_{CH(11)}$ c_{42} -144 c_{42} -145 $v_{CH(95)}$ c_{29} -140 c_{29} -141
19	_	2935	2932	3025	2959	$VCH(96) G_{22}-H_{41}, G_{42}-H_{42}, G_{42}-H_{45}$
20	1658	1657	1655	1712	1675	vCO(78) C ₁₇ =O ₁₈
21	1607	1648	-	1648	1611	$vCC(62) C_{20} - C_{21}, C_{21} - C_{22}, C_{19} - C_{20} (D)$
22	-	1594	1588	1627	1591	$vCC(50) C_2 - C_3, C_1 - C_2, C_4 - C_5 (A) + \delta HNC(15) H_{29} - N_9 - C_8 (B)$
23	-	1585	1588	1619	1584	$vCC(42) C_{13} - C_{14} C_{13} - C_{14} (C)$
24	15/9	15/6	1588	1602	1581	$VC((55) \subseteq 1 - (2, 1) - (2, 1$
26	-	1558	1558	1587	1552	$Vec(u_2) = (1_2 - (2_$
27	1525	1513	1515	1558	1524	$VCC(36) (s_{8}-C_{11}+V)C(16) (N_{9}-C_{8}(B)+\delta HVC(11) H_{29}-N_{9}-C_{8}(B)$
28	1498	1504	1503	1539	1505	δ HCC(46) H ₃₈ -C ₂₄ -C ₁₉ ,H ₃₅ -C ₂₀ -C ₁₉ (D) + ν CC(11) C ₁₉ -C ₂₀ ,C ₁₉ -C ₂₄ (D)
29	1483	1477	1479	1514	1481	δ HNC(26) H ₃₄ -N ₁₆ -C ₁₃ + δ HCC(25) H ₃₃ -C ₁₅ -C ₁₀ ,H ₃₂ -C ₁₄ -C ₁₃ (C)
30	-	1477	1479	1510	1477	δ HCC(36) H ₂₆ -C ₅ -C ₄ ,H ₃₀ -C ₁₁ -C ₁₂ (A,C) + δ HNC(13) H ₂₉ -N ₉ -C ₂ (B)
31	_	-	1479	1509	1475	δ HCH(76) H ₄₀ -C ₃₉ -H ₄₁ ,H ₄₄ -C ₄₂ -H ₄₅ ,H ₄₃ -C ₄₂ -H ₄₅ ,H ₄₃ -C ₄₂ -H ₄₄
32	_	1468	1456	1496	1463	0HCH (78) H ₄₃ -U ₄₂ -H ₄₄ ,H ₄₃ -U ₄₂ -H ₄₅ δ HCC (45) H ₂₅ -C ₆ -C ₇ -H ₂₅ -C ₆
34			1456	1495	1402	0100(+3)125-6-6-5,1127-4-3,1128-63-22(A)+0000(11)02-61-6(A)+000(10)19-62 0100(+3)125-6-6-6,1127-64-63,1128-63-62-62(A)+0000(11)02-61-66(A)+000(10)19-62
35	1435	1432	1434	1465	1433	$\delta HCC(45) H_{29} - C_{4} - C$
36	1410	1414	_	1447	1415	$vCC(44)C_{11}-C_{12}C_{14}-C_{15}(C) + \delta HCC(11)H_{32}-C_{14}-C_{15}H_{33}-C_{15}-C_{14}H_{30}-C_{11}-C_{12}H_{31}-C_{12}-C_{11}(C)$
37	-	1405	1404	1438	1406	$\nu CC(48) C_{23} - C_{24}, C_{20} - C_{21} (D) + \delta HCC(25) H_{38} - C_{24} - C_{23}, H_{35} - C_{20} - C_{21} (D)$
38	-	1378	1377	1410	1379	δ HCC(66) H ₄₄ -C ₄₂ -C ₃₉ + δ HCH(15) H ₄₃ -C ₄₂ -H ₄₅
39	_	1360	1353	1393	1363	δ HNC(19) H ₂₉ -N ₉ -C ₂ , H ₂₉ -N ₉ -C ₈ (B) + δ HCC(20) H ₂₅ -C ₆ -C ₁ , H ₂₇ -C ₄ -C ₅ (A) + v CC(17) C ₈ -C ₁₀ + v CN(17) C ₈ -N ₉
40 41	_	1342	1342	1354	1324	$OHC(28) H_{35}-C_{20}-C_{19}H_{38}-C_{24}-C_{19}(D) + OHC(20) H_{41}-C_{39}-C_{22}$
42	1314	1315	1313	1342	1313	$\delta HCC(35) H_{29} - C_{12} - C_{10} H_{29} - C_{12} - C_{11} + C_{12} - C_{12} - C_{11} + (C_{12} - C_{13} + C_{12} + C$
43	_	1306	1313	1334	1304	$\partial HCC(46) H_{38} - C_2 - C_{19} H_{36} - C_{21} - C_{22} H_{37} - C_{22} - C_{24} H_{35} - C_{20} - C_{21} (D) + vCC(14) C_{21} - C_{22} C_{23} - C_{24} (D)$
44	_	_	1313	1331	1302	$\nu CC(43) C_1 - C_2, C_1 - C_6, C_4 - C_5, C_2 - C_3, C_5 - C_6 (A) + \nu CC(19) C_8 - C_{10} + \delta HCC(10) H_{26} - C_5 - C_4, H_{28} - C_3 - C_4 (A) + \delta HCC(10) H_{26} - C_5 - C_6, H_{28} - C_3 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6, H_{28} - C_3 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6, H_{28} - C_3 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6, H_{28} - C_3 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6, H_{28} - C_3 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6, H_{28} - C_3 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6, H_{28} - C_3 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6, H_{28} - C_3 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6 (A) + \delta HCC(10) H_{26} - C_5 - C_6 + \delta HCC(10) H_{26} - $
45	-	1297	1288	1327	1298	$\nu CN(42) C_{13} - N_{16} + \nu CC(37) C_{10} - C_{11}, C_{10} - C_{15}, C_{12} - C_{13}, C_{13} - C_{14} (C) + \delta HCC (11) H_{37} - C_{23} - C_{24} (D)$
46	_	1252	1252	1285	1257	$vNC(29) N_9 - C_2 (B) + \delta HCC(19) H_{25} - C_6 - C_1 (A) + \delta NCC(12) N_9 - C_2 - C_3 + \delta HNC(11) H_{29} - N_9 - C_2 (B)$
47	1249	- 1242	1244	1277	1249	δ HNC(49) H ₂₉ -N ₉ -C ₈ + δ HCC(19) H ₂₅ -C ₆ -C ₁ ,H ₂₈ -C ₃ -C ₂ (A) + ν NC(10) N ₉ -C ₂ (B)
40 49	1241	1245	1244	1271	1245	$v(N(31) \cap_{12} - V_{42}, \Pi_{40} - U_{39} - U_{22} + 0 \cap (\Pi 1) \Pi_{43} - U_{42} - \Pi_{44}, \Pi_{43} - U_{42} - \Pi_{45}$
50	1228	1225	1226	1254	1227	$VC(35)$ $C_{12} - C_{19} + VC(13)$ $N_{16} - C_{12} + 3HNC(12)$ $H_{32} - H_{16} - C_{12} + 3HC(10)$ $H_{36} - C_{21} - C_{20}$ $H_{21} - C_{12} - C_{11}$ (D.C)
51	1198	1198	1199	1227	1200	$vCC(64) C_{22}-C_{39}, C_{23}-C_{24} + \delta HCC(13) H_{38}-C_{24}-C_{23}, H_{35}-C_{20}-C_{21} (D)$
52	1183	1189	1180	1215	1188	$\delta HCC(23) H_{30} - C_{11} - C_{12}, H_{31} - C_{12} - C_{11}, H_{32} - C_{14} - C_{15} (B) + \nu NC(12) N_9 - C_8 + \delta HNC(10) H_{34} - N_{16} - C_{13} + \delta HNC(10) H_{34} - N_{16} - C_{15} + \delta HNC(10) H_{34} - N_{16} - C_{15} + \delta HNC(10) H_{34} - N_{16} - C_{15} + \delta HNC(10) H_{34} - N_{16} + \delta HNC(10) H_{34} + \delta$
53	-	1180	1180	1207	1181	$\delta HCC(87) H_{35} - C_{20} - C_{21} H_{36} - C_{21} - C_{20} H_{38} - C_{24} - C_{23} H_{37} - C_{23} - C_{24} (D)$
54	-	1162	1158	1192	1165	$\delta HCC(36) H_{33}-C_{15}-C_{14}H_{32}-C_{14}-C_{15}(C)+\delta NCC(14) N_9-C_8-C_{10}$
55 56	1154	1153	- 1120	1181	1155	$\frac{\partial HC(b)}{\partial t_2}H_{27}-t_3-t_4-t_5,H_{27}-t_4-t_5,H_{27}-t_5-t_5(A)$
57	_	-	1117	1140	1125	$\frac{\partial (C_{22})}{\partial T_{22}} - \frac{\partial (T_{22})}{\partial $
58	_	1117	1105	1143	1118	$\delta HC(143) H_{27} - C_{22} - C_{22} + C_{23} - C_{23} + C_{23} - $
59	_	1090	_	1115	1091	$vNC(53) N_{16}-C_{17} + \delta HCC(17) H_{35}-C_{20}-C_{19} H_{38}-C_{24}-C_{19} (D) + \delta CCC(16) C_{17}-C_{19}-C_{20}$
60	_	1054	1053	1079	1055	$\deltaHCC(42)H_{43}-C_{42}-C_{39},H_{44}-C_{42}-C_{39},H_{45}-C_{42}-C_{39}$
61	_	_	1053	1074	1051	$vSC(49) C_1 - S_7 (B) + vCC(12) C_1 - C_2, C_1 - C_6 (A)$
62	1048	1045	1053	1068	1044	$\delta HCH(35) H_{43} - C_{42} - H_{44}, H_{43} - C_{42} - H_{45} + \delta HCC(19) H_{40} - C_{39} - C_{22}, H_{41} - C_{39} - C_{22}$
63 64	1015	1018	1018	1042	1019	$\delta LCC(70) = -4 - 45, 4 - 45 - 46 + \delta HLC(12) + 28 - 43 - 44, 4 - 46 - 45, 4 - 46 - 45, 4 - 46 + 46 + 46 + 46 + 46 + 46 + 46 + $
04 65	985	982	987	1054	986	$0 < c_1 < j_1 = c_2 - c_2 + c_2 - c_2 + c_2 - c_2 - c_2 = c_2 + 0 + 0 = 0 < c_1 - c_2 - c_2 + c_2 - c_2 + c_2 - c_2 < 0 = 0 $
66	967	973	966	994	972	γ HCCC(80) H ₃₅ -C ₂₀ -C ₂₁ -C ₂₂ H ₃₆ -C ₂₁ -C ₂₀ -C ₁₉ out of H (D)
67	_	946	947	970	949	$vCC(82) C_{39}-C_{42}$
68	-	-	947	969	948	γ HCCC(75) H ₃₁ -C ₁₂ -C ₁₁ -C ₁₀ H ₃₀ -C ₁₁ -C ₁₂ -C ₁₃ out of H (C)
69	-	-	947	966	945	γ HCCC(87) H ₂₆ -C ₅ -C ₄ -C ₃ ,H ₂₇ -C ₄ -C ₃ -C ₂ out of H (A)
70	-	-	947	965	944	γ HCCC(79) H ₃₈ -C ₂₄ -C ₁₉ -C ₂₀ H ₃₇ -C ₂₃ -C ₂₂ -C ₂₁ out of H (D)
/1	_	937	937	961	939	νου ο ₁ ο ₂ -u ₈ (β) +0HNU (19) H ₂₉ -N ₉ -U ₈ (β)

Table 5 (continued)

	Raman		Infrared			PED (%) ^{c,d}
No.	Exp. ^a	Calc. ^a	Exp.	Calc.		
				Unscld. ^a	Scld. ^{b,a}	
72	902	910	897	929	908	γ HCCC(78) H ₂₂ -C ₁₅ -C ₁₀ -C ₈ H ₂₂ -C ₁₄ -C ₁₂ -C ₁₂ out of H (C)
73	_	901	897	922	902	YHCCC(82) H ₂₉ -C ₅ -C ₄ -C ₃ H ₂₂ -C ₄ -C ₄ -C ₄ -C ₅ -H ₂₅ -C ₅ -C ₃ -C ₂ -N ₉ out of H (A)
74	_	883	_	904	884	$\delta NC0(47) N_{16} - C_{17} - O_{18} + \delta CNC(11) C_{13} - N_{16} - C_{17} + VCC(10) C_{17} - C_{19} + VNC(10) N_{16} - C_{17}$
75	841		855	867	848	γ HCCC(58) H ₃₆ -C ₂₁ -C ₂₀ -C ₁₉ H ₃₅ -C ₂₀ -C ₂₁ -C ₂₂ out of H (D)
76	841	847	855	866	847	$\delta CCC(32) C_4 - C_5 - C_6 (A) + \delta CCC (10) C_{10} - C_{11} - C_{12} - C_{15} - C_{14} (C)$
77	_	829	839	847	829	γHCCC(65) H ₃₅ -C ₂₀ -C ₁₉ -C ₁₇ H ₃₆ -C ₂₁ -C ₂₂ -C ₃₉ H ₃₈ -C ₂₄ -C ₁₉ -C ₁₇ H ₃₇ -C ₂₃ -C ₂₂ -C ₃₉ out of H (D)
78	823	820	822	837	818	γ HCCC(93) H ₂₈ -C ₃ -C ₂ -C ₁ H ₂₅ -C ₆ -C ₁ -C ₂ H ₂₆ -C ₅ -C ₆ -C ₁ H ₂₇ -C ₄ -C ₃ -C ₂ out of H (A)
79	_	811	_	829	811	$vCN(22) C_{13} - N_{16} + vCC(16) C_{12} - C_{13} - C_{14} (C) + \gamma HCCC(11) H_{38} - C_{24} - C_{19} - C_{20} H_{37} - C_{23} - C_{22} - C_{21} \text{ out of H } (D)$
80	788	784	784	794	776	τ HCCH(58) H ₄₀ -C ₃₉ -C ₄₂ -H ₄₄ ,H ₄₁ -C ₃₉ -C ₄₂ -H ₄₅
81	771	775	770	793	775	γ HCCC(69) H ₃₀ -C ₁₁ -C ₁₀ -C ₈ ,H ₃₁ -C ₁₂ -C ₁₃ -N ₁₆ ,H ₃₃ -C ₁₅ -C ₁₀ -C ₈ ,H ₃₂ -C ₁₄ -C ₁₃ -N ₁₆ out of H (C)
82	771	-	770	787	770	γ HCCC(57) H ₃₀ -C ₁₁ -C ₁₀ -C ₈ ,H ₃₁ -C ₁₂ -C ₁₃ -N ₁₆ ,H ₃₃ -C ₁₅ -C ₁₀ -C ₈ ,H ₃₂ -C ₁₄ -C ₁₃ -N ₁₆ out of H (C)
83	771	766	770	785	768	γ HCCC(76) H ₃₀ -C ₁₁ -C ₁₀ -C ₈ ,H ₃₁ -C ₁₂ -C ₁₃ -N ₁₆ ,H ₃₃ -C ₁₅ -C ₁₀ -C ₈ ,H ₃₂ -C ₁₄ -C ₁₃ -N ₁₆ out of H (C)
84	_	757	756	770	753	γ ONCC(70) O ₁₈ -N ₁₆ -C ₁₇ -C ₁₉ + τ HCCC(10) C ₂₄ -C ₂₀ -C ₁₉ -C ₁₇ (D)
85	726	721	727	743	727	γ HCCC(89) H ₂₅ -C ₆ -C ₅ -C ₄ ,H ₂₇ -C ₄ -C ₃ -C ₂ ,H ₂₈ -C ₃ -C ₂ -C ₁ ,H ₂₆ -C ₅ -C ₆ -C ₁ out of H (A)
86	710	-	698	713	697	γ CCCC(66) C ₁₀ -C ₁₁ -C ₁₂ -C ₁₃ ,C ₁₀ -C ₁₅ -C ₁₄ -C ₁₃ ,C ₃ -C ₂ -C ₁ -C ₆ out of C (C,A) + γ ONCC(14) O ₁₈ -N ₁₆ -C ₁₇ -C ₁₉
87	_	694	698	710	694	$vSC(46) C_1 - S_7 + \delta CCC(25) C_2 - C_1 - C_6 C_3 - C_4 - C_5 (A)$
88	_	_	698	708	692	$\gamma OCNC(52) O_{18} - C_{19} - N_{16} - C_{17} + \gamma HCCC(22) H_{37} - C_{23} - C_{22} - C_{21} + H_{36} - C_{21} - C_{22} - C_{23} \text{ out of } H (D)$
89	677	685	-	703	687	$\tau CCCC(78) C_1 - C_2 - C_3 - C_4, C_5 - C_6 - C_1 - C_2, C_{10} - C_{11} - C_{12} - C_{13}, C_{10} - C_{15} - C_{14} - C_{13} (A, C)$
90	-	667	-	682	667	$vSC(37)$ S ₇ -C ₈ + $\delta NCC(15)$ N ₉ -C ₈ -C ₁₀
91	652	649	648	656	642	$\frac{\partial CCN(30)}{\partial 1} C_{12} - C_{13} - N_16, C_3 - C_2 - N_9 + \frac{\partial CCC(16)}{\partial 1} C_4 - C_5 - C_6, C_{11} - C_{12} - C_{13}(A, C) + \frac{\partial CNC(10)}{\partial 1} C_2 - N_9 - C_8$
92	-	-	630	652	638	0CC(T) = (-2) - (-2)
93	629	531	623	642 C1C	628	$0CCC(63)C_{10}-C_{11}-C_{12}C_{10}-C_{15}-C_{14}(C)$
94	_	595	597	510 572	602 560	$0 \text{CCC}(2) \text{C}_{22} - \text{C}_{39} - \text{C}_{42} \text{C}_{20} - \text{C}_{21} - \text{C}_{22} - \text{C}_{24} \text{C}_{23} + 0 \text{CCC}(12) \text{C}_{23} - \text{C}_{22} - \text{C}_{21} \text{(D)}$
95	-	559	502	5/3	500	$\gamma = 1 \log(57) = 134 - \log(-1)3 - \log(-1)3 - \log(-1)3 + \log(-1)3 +$
990	535	520	555	542	521	$\gamma = 1000 (100) - 1000 (1000) = 10000 (1000) = 1000 (1000) = 1000 (1000) = 1000 (1000$
97	549	505	 509	521	500	$CCC(0) C_3 - C_4 - C_5 - C_6 C_1 - C_6 - C_5 - C_4 (A) + CCC(N(11) C_6 - C_1 - C_2 - Ng(B))$
90		487	481	501	490	$VHCCC(21) C_{19} - C_{20} - C_{21} - C_{24} - C_{23} - C_{23} - C_{25} - $
100	468	469	469	497	430	$\beta_{1} = \beta_{1} = \beta_{1$
100	458	405	405	473	462	
102	440	433	435	425	416	$TCCC(148) C_{2-} C_{2-} C_{3-} C_{4-} C_{2-} C_{2-} C_{1-} (A)$
102	_	424	422	423	413	$TCCC(61) C_2 - C_1 - C_2 - C_2 - C_2 - C_1 (A)$
104	411	415	411	416	407	TCCCC(82) C ₂ C ₁ C ₃ C ₁ C ₃ C ₁ C ₂ C ₁ C ₂ C ₂ C ₁
105	_	406	411	416	407	$\zeta CCC(86) C_8 - C_{10} - C_{15} - C_{14} - C_{15} - C_{14} - C_{13} - C_{27} - C_{20} - C_{19} - (C,D)$
106	_	379	_	386	378	γ SCNC(22) S ₇ -C ₁₀ -N ₉ -C ₈ + τ CCNC(10) C ₁₂ -C ₁₃ -N ₁₆ -C ₁₇
107	_	361	_	369	361	$\delta CCN(50) C_{14} - C_{13} - N_{16} + \delta NCO(20) N_{16} - C_{17} - O_{18}$
108	_	352	_	362	354	$\delta CCC(28) C_{22} - C_{39} - C_{42} C_{17} - C_{19} - C_{20} C_{23} - C_{22} - C_{39}$
109	_	334	_	339	332	τ HCCC(44) H ₄₃ -C ₄₂ -C ₃₉ -C ₂₂
110	308	307	_	313	306	$\delta CNC(16) C_{13} - N_{16} - C_{17}, C_2 - N_9 - C_8 + \delta CCC(12) C_{17} - C_{19} - C_{24} + \tau HNCC(10) H_{29} - N_9 - C_2 - C_1$
111	302	298	-	300	293	$\tau NCCC(39) N_9 - C_8 - C_{10} - C_{15} + \tau HCCH(16) H_{40} - C_{39} - C_{42} - H_{43}$
112	284	280	_	287	281	$\tau CNCC(10) C_{13} - N_{16} - C_{17} - C_{19} + \delta CCC(10) C_{17} - C_{19} - C_{20}$
113	256	262	_	268	262	τ HNCC(65) H ₂₉ -N ₉ -C ₂ -C ₁
114	-	235	-	242	237	$\tau HNCC(18) H_{29} - N_9 - C_8 - C_{10} + \tau HCCC(17) H_{43} - C_{42} - C_{39} - C_{22}$
115	-	226	-	230	225	$\tau HCCC(22) H_{43} - C_{42} - C_{39} - C_{22} + H_{45} - C_{42} - C_{39} - C_{22} + \tau HCCH(10) H_{40} - C_{39} - C_{42} - H_{43}$
116	203	208	_	208	203	$\tau HCCC(13) H_{43} - C_{42} - C_{39} - C_{22} + H_{45} - C_{42} - C_{39} - C_{22} + \tau HCCH(11) H_{41} - C_{39} - C_{42} - H_{44}$
117	_	190	_	195	191	$\tau HCCC(30) H_{43} - C_{42} - C_{39} - C_{22} + H_{45} - C_{42} - C_{39} - C_{22} + \tau HCCH(12) H_{40} - C_{39} - C_{42} - H_{44}$
118	-	172	-	174	170	τ SCCH(71) S7-C1-C6-H25 + τ NCCH(14) N9-C2-C3-H28
119	145	136	_	140	137	τ CCNC(10) C ₁₄ -C ₁₃ -N ₁₆ -C ₁₇
120	_	118	_	125	122	0 CNC(41) C_{13} -N ₁₆ - C_{17} +tCCNC(12) C_{14} - C_{13} -N ₁₆ - C_{17}
121	_	91	_	93 70	91 77	$\frac{1}{2} \frac{1}{10} \frac{1}{10} \frac{1}{10} - \frac{1}{10} - \frac{1}{10} + \frac{1}{10} \frac{1}{10} \frac{1}{10} - \frac{1}{10} - \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}$
122	_	 72	_	79 71	70	$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}$
125	_	75 55	_	7 I 51	70 50	YUNUU(10) U13 ⁻¹¹ 16 ⁻ 017 ⁻¹ 19.U2 ⁻¹¹ 9 ^{-U} 8 ^{-U} 10 +0UNU(14) U13 ⁻¹¹ 16 ^{-U} 17
124	_	35 46	_	44	43	τουταγιο γ το γ το τη
125	_	37	_	36	35	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$
127	_	_	_	33	32	$\delta CNC(32) C_{12} - N_{12} - C_{12} + CNCC(19) C_{2} - N_{10} - C_{10} - (\pi C C C C C C C C C C C C C C C C C C $
128	_	28	_	25	25	$\tau CCNC(49) C_{14} - C_{13} - N_{16} - C_{17} + \tau CNCC(24) C_2 - N_0 - C_8 - C_{10} + \tau CCCC(11) C_{21} - C_{22} - C_{20} - C_{42}$
129	_	10	_	14	14	$\tau CNCC(49) C_{13} - C_{16} - C_{17} - C_{19} + \tau CCNC(17) C_2 - N_9 - C_8 - C_{10} + \tau CCCC(13) C_{17} - C_{10} - C_{24} - C_{23}$

Exp.: Experimental, Calc.:Calculated, Unscld.:Unscaled, Scld.:Scaled.

^b All calculated IR wavenumbers were scaled with 0.9780.
 ^c PED (Potential Energy Distribution) values lower than10% were not included.

d Letters in parentheses stand for the rings,i.e. (A) for ringA

3.2.1.3. C=O stretching modes. Carbonyl stretching (vC = O) vibration appeared as an intense band in the range of 1600–1800 cm⁻¹ [72]. In our previous work [37], carbonyl stretching for the similar benzothiazole compound was reported at 1653 cm⁻¹ (IR), 1655 cm⁻¹ (Raman) and calculated at 1677 cm⁻¹. In this work, carbonyl band ($\nu C_{17} = O_{18}$) for BSN-009 was observed at 1655 cm⁻¹ in IR and 1658 cm⁻¹ in Raman (Table 5), while carbonyl band

 $(\nu C_{17}$ = $O_{18})$ for BSN-011 was only observed at 1654 cm^{-1} in IR (Table 6). The corresponding carbonyl bands were calculated at 1675 cm^{-1} for BSN-009 and 1671 cm^{-1} for BSN-011, respectively. Stretching mode belonging to C17=O18 was observed in Raman spectrum at 1658 cm⁻¹ for BSN-009, whereas no band appeared for BSN-011.

Table 6Vibrational wavenumbers and assignments for BSN-011.

	Raman		Infrared					
No.	Exp. ^a	Calc. ^a	Exp.	Calc.		PED (%) ^{c,d}		
	-		-	Unscld. ^a	Scld. ^b			
		22.40	22.47	2051	2571			
1	-	3349	3347	3651	3571	$vNH(100) N_9 - H_{29}(B)$		
2	-	3304	3303	3621	3541	$VNH(100) N_{16}-H_{34}$		
3	-	3169	31/8	3242	3171	$VCH(99) C_{12} - H_{31}(C)$		
4	-	-	-	3223	3152	$VCH(94) C_{20} - H_{35}, C_{21} - H_{36} (D)$		
5	_	3151	_	3222	3151	$VCH(93)C_{23}-H_{37},C_{24}-H_{38},C_{21}-H_{36}$		
6	_	3133	_	3205	3134	$vCH(100) C_{20} - H_{35} C_{21} - H_{36} (D)$		
7	_	3124	_	3199	3129	$vCH(92) C_3 - H_{28} C_4 - H_{27} C_5 - H_{26} C_6$		
						$-H_{25}(A)$		
8	-	3115	3111	3188	3118	vCH(95) C ₃ -H ₂₈ ,C ₄ -H ₂₇ ,C ₅ -H ₂₆ ,C ₆		
						-H ₂₅ (A)		
9	_	-	-	3180	3110	vCH(98) C_3 -H ₂₈ , C_4 -H ₂₇ , C_5 -H ₂₆ , C_6		
10	_	3106	_	3178	3108	$-\pi_{25}(R)$ vCH(90) C ₁₅ -H ₃₃ ,C ₁₄ -H ₃₂ (C)		
11	_	_	_	3174	3104	$vCH(98) C_{24} - H_{38}C_{23} - H_{37}(D)$		
12	-	_	-	3172	3102	$vCH(90) C_3 - H_{28}, C_4 - H_{27}, C_5 - H_{26}, C_6$		
						-H ₂₅ (A)		
13	_	3097	-	3164	3094	vCH(99) C ₁₁ -H ₃₀ (C)		
14	-	3079	3065	3149	3080	vCH(90) C ₁₄ -H ₃₂ ,C ₁₅ -H ₃₃ (C)		
15	-	1675	1654	1709	1671	νCO(79) C ₁₇ =Ο ₁₈		
16	-	1603	1599	1634	1598	$vCC(46) C_{22} - C_{23}, C_{19} - C_{20}, C_{20}$		
						$-C_{21},C_{23}-C_{24}(D)$		
17	1592	1594	1599	1632	1596	$vCC(44) C_{19} - C_{24}, C_{21} - C_{22} (D)$		
18	1592	—	1589	1628	1592	$vCC(45) C_2 - C_3, C_5 - C_6, C_4 - C_5, C_3 - C_4$		
10		1505	1500	1010	1500	$(A) + \delta HNC(11) H_{29} - N_9 - C_8 (B)$		
19	-	1585	1589	1619	1583	$v(C(51) C_1 - C_2, C_4 - C_5, C_{14} - C_{15}, C_{11}$		
20	_	1576	1589	1616	1580	$-C_{12}$ (A,C) vCC(55) C ₁ -C ₆ , C ₃ -C ₄ ,C ₁₄ -C ₁₅ ,C ₁₁		
						$-C_{12}(A,C)$		
21	-	1549	1557	1585	1550	δ HNC(44) H ₃₄ -N ₁₆ -C ₁₃ + ν CC(11)		
						$C_{13} - C_{14}(C)$		
22	-	1531	1535	1567	1533	$vNO(75) N_{39} = O_{40}, N_{39} = O_{4$		
23	_	1522	1520	1556	1522	$vCC(25) C_{21} - C_{22} + vNC(11) N_{2} - C_{22}$		
25		1522	1520	1550	1522	$(B) + \delta HNC(10) H_{20} - N_0 - C_8 (B)$		
24	_	1486	1488	1521	1488	δ HCC(27) H ₃₈ -C ₂₄ -C ₁₉ ,H ₃₅ -C ₂₀		
						$-C_{19}(D) + vCC(23)C_{19} - C_{20},C_{19} - C_{24}$		
						(D)		
25	-	1477	1478	1511	1478	vHCC(48) H ₂₆ -C ₅ -C ₄ ,H ₃₃ -C ₁₅		
						$-C_{10},H_{36}-C_{21}-C_{20}$		
						$(A,C,D) + \delta HNC(13) H_{29} - N_9 - C_2$		
26	-	—	1478	1508	1475	$\delta HCC(42) H_{26} - C_5 - C_4, H_{31} - C_{12}$		
						$-C_{13}, H_{38} - C_{24} - C_{23}$		
27		1469	1457	1405	1460	$(A,C,D) + 0$ HNC(23) $H_{34} - N_{16} - C_{13}$		
27	-	1408	1457	1455	1402	$(A) + \delta C C C (11) C_{2} - C_{3} - C_{4}$		
						$(A) + vNC(11) N_0 - C_2$		
28	_	1432	1435	1468	1436	$\delta HCC(36) H_{26} - C_5 - C_4 H_{27} - C_4$		
						$-C_{5}H_{30}-C_{11}-C_{12}(A,C)+\delta HNC(30)$		
						$H_{29}-N_9-C_2,H_{29}-N_9-C_8$ (B)		
29	-	1423	-	1452	1420	vCC(45) C ₁₁ -C ₁₂ ,C ₁₄ -C ₁₅		
						$(C) + \delta HCC(24) H_{32} - C_{14} - C_{15} H_{33}$		
						$-C_{15}-C_{14},H_{30}-C_{11}-C_{12}(C)$		
30	-	1396	1408	1431	1400	$vCC(43) C_{23} - C_{24}, C_{20} - C_{21}$		
						(D) $+\delta$ HCC(24) H ₃₈ -C ₂₄ -C ₂₃ ,H ₃₅		
21		1260		1204	1262	$-C_{20}-C_{21}(D)$		
31	—	1360	—	1394	1303	$(\mathbf{P}) + \delta \mathbf{H}(\mathbf{C}(27) \mathbf{H} - \mathbf{C}_2, \mathbf{H}_{29} - \mathbf{C}_9 - \mathbf{C}_8$		
						$(B) + 0\Pi CC(37)\Pi_{27} - C_4 - C_5,\Pi_{27} - C_4$ - $C_2(A) + vCC(12)C_2 - C_4 + vCN(10)$		
						$C_8 = N_0$		
32	_	1324	1347	1356	1326	$vCC(69) C_{19} - C_{20}, C_{19} - C_{24}, C_{20}$		
						$-C_{21}, C_{21} - C_{22}, C_{23} - C_{24}$ (D)		
33	-	1315	1312	1348	1318	vNO(54) N ₃₉ =O ₄₀ , N ₃₉ =		
						$O_{41} + \delta CCH(19) H_{31} - C_{12} - C_{11} H_{30}$		
						$-C_{11}-C_{12}(C)$		
34	-	1306	1312	1338	1309	δ HCC (33) H ₃₃ -C ₁₅ -C ₁₀ ,H ₃₁ -C ₁₂		
25			1010	1000	1202	$-C_{11}(C) + \delta NCC (14) N_{16} - C_{13} - C_{14}$		
35	-	-	1312	1332	1303	$V(L(55)) L_1 - L_2, L_1 - L_6, L_4 - L_5$		
						$(A) + v c (20) c_8 - c_{10} + 0 H c (13)$		
						$n_{26} - c_5 - c_4(A)$		

Table 6 (continued)

	Raman		Infrared			
No.	Exp. ^a	Calc. ^a	Exp.	Calc.		PED (%) ^{c,d}
				Unscld. ^a	Scld. ^b	
36	_	1297	1288	1325	1296	δHCC(64) H ₃₅ -C ₂₀ -C ₂₁ ,H ₃₇ -C ₂₃ -C ₂₄ H ₃₆ -C ₂₁ -C ₂₀ , H ₃₆ -C ₂₁ -C ₂₂ ,
37	-	-	1288	1321	1292	$\begin{array}{c} -n_{38} - c_{23} - C_{23} & (D) + VCN(10) C_{22} \\ -n_{39} & VCN(40) C_{13} - N_{16} + \delta HCC (31) H_{35} \\ -C_{20} - C_{21} H_{37} - C_{23} - C_{24} \end{array}$
38	_	1261	1260	1285	1257	(D) +vCC(10) C_{10} - C_{11} , C_{12} - C_{13} (C) vNC(27) N ₉ - C_2 (B) + δ HCC(20) H ₂₅ - C_6 - C_1 (A) + δ NCC(13) N ₉ - C_2 (B)
39	_	1252	1252	1279	1251	$-C_3 + 0$ HNC(10) $H_{29} - N_9 - C_2$ (B) δ HNC(40) $H_{29} - N_9 - C_2$ (B) $+ \delta$ HCC(20) $H_{28} - C_3 - C_2, H_{27} - C_4$
40	_	1243	1228	1270	1242	$-C_{5} (A) + vNC(12) N_{9}-C_{2} (B) vCN(40) C_{13}-N_{16} + vCN(16) C_{2}-N_{9} (B) + \delta HNC(10) H_{29}-N_{9}-C_{2} (B) - \delta HNC(10) H_{29}-N_{9}-C_{2} $
41	_	1216	_	1239	1212	(B) + $vCC(10) C_{17}-C_{19} (C)$ $vCC(23) C_{17}-C_{19} + vCN(18) C_{17}$ $-N_{16} + \delta HNC(14) H_{34}-N_{16}$
42	_	1198	1184	1220	1193	$\begin{array}{c} -C_{13} + \delta HCC(10) H_{36} - C_{21} - C_{20} H_{31} \\ -C_{12} - C_{11} (D,C) \\ \delta HCC(36) H_{30} - C_{11} - C_{10} H_{31} - C_{12} \\ -C_{11} (B) + vNC(13) N_9 \\ C_{11} + \delta HCC(10) H_{10} N_{10} - C_{10} \\ \end{array}$
43	-	1171	-	1202	1176	$-C_8 + 0$ HNC(10) $H_{34} - N_{16} - C_{13}$ δ HCC(78) $H_{35} - C_{20} - C_{21} + H_{36} - C_{21}$ $-C_{22} + H_{23} - C_{23} + C_{23} - C_{23} + C_{23}$
44	-	1162	1162	1192	1166	$\sim C_{20}, \Pi_{38} - C_{24} - C_{23}, \Pi_{37} - C_{23} - C_{24} - C_{24}$ $\delta HCC(25) H_{33} - C_{15} - C_{14}, H_{32} - C_{14}$ $-C_{15} (C) + \delta NCC(12) N_0 - C_0 - C_{10}$
45	-	1153	1162	1182	1156	δ HCC(79) H ₂₆ -C ₅ -C ₄ ,H ₂₇ -C ₄ -C ₅ ,H ₂₅ -C ₆ -C ₅ (A)
46	_	1126	-	1150	1125	δ HCC(29) H ₃₂ -C ₁₄ -C ₁₅ , H ₃₃ -C ₁₅ -C ₁₄ ,H ₃₁ -C ₁₂ -C ₁₁ ,H ₃₀ -C ₁₁ -C ₁₂
47	-	1117	1112	1146	1121	(b) +onixC (14) H_{29} -N ₉ -(k ₉) δ HCC(42) H_{20} -C ₃ -C ₄ H_{27} -C ₄ -C ₅ , H_{26} -C ₅ -C ₆ (A) +vSC(13) C ₁ -S ₇ +vCC(11) C ₁ -C ₂
48	-	1108	1102	1131	1106	δ HCC(66) H ₃₈ -C ₂₄ -C ₂₃ ,H ₃₇ -C ₂₃ -C ₂₄ H ₂₅ -C ₂₄ -C ₂₃ ,H ₃₇ -C ₂₃
49	-	1090	-	1116	1091	$v_{NC}(40) N_{39} - C_{22} + v_{CN}(14) N_{16} - C_{17} + \delta HCC(11) H_{26} - C_{21} - C_{22} (D)$
50	_	1081	1073	1110	1086	$\begin{array}{c} \delta CCC(66) C_{20}-C_{21}-C_{22},C_{22}-C_{23}-C_{24}\\ (D)+\nu NC(11) N_{39}-C_{22}+\nu CN(10)\\ N_{12}-C_{12}-C_{12}-C_{12}+VCN(10)\\ \end{array}$
51	-	1054	-	1075	1051	$v_{16} - c_{17}$ $vSC(49) C_1 - S_7 (B) + vCC(11) C_1$ $-C_2 C_1 - C_6 (A)$
52	-	1018	1014	1042	1019	$\delta CCC(73) C_3 - C_4 - C_5, C_4 - C_5$ $-C_6 + \delta HCC(12) H_{28} - C_3 - C_4, H_{24} - C_6$
53	-	1000	1014	1028	1005	$\begin{array}{l} -C_{5},H_{26}-C_{5}-C_{4}\left(A\right)\\ \delta CCC(68)\ C_{19}-C_{20}-C_{21},C_{20}-C_{21}\\ -C_{22},C_{22}-C_{23}-C_{24}\left(D\right)+\delta HCC(17) \end{array}$
54	_	991	991	1008	986	$\begin{array}{c} H_{36}-C_{21}-C_{20}, H_{38}-C_{24}-C_{23} (D) \\ \delta CCC(50) C_{10}-C_{11}-C_{12}, C_{10}-C_{15}-C_{14} \\ (C) +\delta HCC(15) H_{33}-C_{15}-C_{14}, H_{31} \\ \end{array}$
55	-	982	991	1006	984	$-C_{12}-C_{11}$ (C) γ HCCC(87) H ₃₅ -C ₂₀ -C ₂₁ -C ₂₂ ,H ₃₆ $-C_{22}-C_{22}-C_{23}$,G
56	_	964	969	982	960	γ HCCC(85) H ₃₇ -C ₂₃ -C ₂₂ -C ₂₁ ,H ₃₈ -C ₂₄ -C ₂₂ -C ₂₃ out of H (D)
57	_	946	944	970	949	γ HCCC(89) H ₂₆ -C ₅ -C ₄ -C ₃ ,H ₂₇ -C ₄ -C ₃ -C ₂ out of H (A)
58	-	-	944	970	949	γ HCCC(86) H ₃₁ -C ₁₂ -C ₁₁ -C ₁₀ ,H ₃₀ -C ₁₁ -C ₁₂ -C ₁₃ out of H (C)
59	_	937	944	963	942	v SC(34) C ₈ -S ₇ (B) + δ HNC (18) H ₂₉ -N ₉ -C ₈ (B)
60	_	910	900	933	912	γ HCCC(92) H ₃₃ -C ₁₅ -C ₁₀ -C ₈ ,H ₃₂ -C ₁₄ -C ₁₃ -C ₁₂ out of H (C)
61	_	910	900	926	906	γ HCCC(94) H ₂₆ -C ₅ -C ₄ -C ₃ ,H ₂₇ -C ₄ -C ₅ -C ₆ ,H ₂₅ -C ₆ -C ₁ -S ₇ ,H ₂₈ -C ₃ -C ₂ -N ₀ out of H (A)
62	_	883	-	906	886	$ \begin{split} &\delta NCO(49) N_{16} - C_{17} - O_{18} + \delta CNC(19) \\ &C_{13} - N_{16} - C_{17} + vCC(11) C_{17} \\ &- C_{19} + vNC(11) N_{16} - C_{17} \end{split} $

(continued on next page)

Table 6 (continued)

Raman			Infrared				
No.	Exp. ^a	Calc. ^a	Exp.	Calc.		PED (%) ^{c,d}	
				Unscld. ^a	Scld. ^b		
63	862	856	866	879	860	γHCCC(78) H ₃₆ -C ₂₁ -C ₂₀ -C ₁₉ ,H ₃₅	
64	-	847	853	867	848	$-C_{20}-C_{21}-C_{22} \text{ out of H } (D)$ $\delta CCC(33) C_4-C_5-C_6 (A) + \delta CCC (15)$ $C_{10}-C_{11}-C_{12}-C_{10}-C_{15}-C_{14} (C) +$	
65	-	838	853	865	846	$\begin{array}{l} \delta ONO((15) O_{40} - N_{39} - O_{40} \\ \delta ONO(41) O_{40} - N_{39} - O_{40} + \delta CNO(11) \\ C_{22} - N_{39} - O_{40}, C_{22} - N_{39} \\ - O_{44} + v(CN(10) C_{50} - N_{50}) \end{array}$	
66	839	829	829	847	828	$-G_{41} + vCl((10) + 22^{-1}39)$ γHCCC(82) H ₃₅ -C ₂₀ -C ₁₉ -C ₁₇ ,H ₃₆ $-C_{21}-C_{22}-C_{39}$,H ₃₈ -C ₂₄ -C ₁₉ $-C_{42} + 42^{-2}-C_{23}-C_{23}$ out of H (D)	
67	839	820	829	839	821	γHCCC(90) H ₂₈ -C ₃ -C ₂ -C ₁ ,H ₂₅ -C ₆ -C ₁ -C ₂ , H ₂₆ -C ₅ -C ₆ -C ₁ ,H ₂₇ -C ₄ -C ₃ -C ₂ out of H (A)	
68	_	811	-	827	809	vCN(39) C_{13} -N ₁₆ +vCC(20) C_{12} - C_{13} , C_{13} - C_{14} (C) + γ HCCC(10) H_{38} - C_{24} - C_{19} - C_{20} , H_{37} - C_{23} - C_{22} - C_{21} out of H (D)	
69	-	775	777	795	778	γ HCCC(86) H ₃₀ -C ₁₁ -C ₁₀ -C ₈ ,H ₃₁ -C ₁₂ -C ₁₃ -N ₁₆ ,H ₃₃ -C ₁₅ -C ₁₀ -C ₈ ,H ₂₂ -C ₁₄ -C ₁₂ -N ₁₆ out of H (C)	
70	-	766	765	787	770	γHCCC(86) H ₃₀ -C ₁₁ -C ₁₀ -C ₈ ,H ₃₁ -C ₁₂ -C ₁₃ -N ₁₆ ,H ₃₃ -C ₁₅ -C ₁₀ -C ₈ H ₂₂ -C ₁₄ -C ₁₃ -N ₁₆ out of H (C)	
71	-	748	_	763	746	$\gamma ONCC(79) O_{18} - N_{16} - C_{17}$ - $C_{19} + \tau HCCC(18) C_{24} - C_{20} - C_{19} - C_{17}$ (D)	
72	-	730	732	746	730	γ HCCC(86) H ₂₅ -C ₆ -C ₅ -C ₄ ,H ₂₇ -C ₄ -C ₃ -C ₂ ,H ₂₈ -C ₃ -C ₂ -C ₁ ,H ₂₆ -C ₅ -C ₆ -C ₁ out of H (A)	
73	_	712	713	728	712	$\begin{array}{l} \delta \text{CNO}(17) \ C_{22} - \text{N}_{39} - \text{O}_{40}, C_{22} - \text{N}_{39} \\ - \text{O}_{41} + \delta \text{CCC}(15) \ C_{19} - \text{C}_{20} - \text{C}_{21}, \text{C}_{21} \\ - \text{C}_{22} - \text{C}_{23}, \text{C}_{19} - \text{C}_{24} - \text{C}_{23} \\ (\text{D}) + \delta \text{CCN}(14) \ \text{C}_{21} - \text{C}_{22} \\ \end{array}$	
74	_	703	697	713	697	$\begin{array}{c} -N_{39} + VCC(15) C_{21} - C_{22}(D) \\ \tau CCCC(44) C_{10} - C_{11} - C_{12} - C_{13}, C_{10} \\ - C_{15} - C_{14} - C_{13}, C_{3} - C_{2} - C_{1} - C_{6} \\ (C,A) + \gamma ONCC(19) O_{18} - N_{16} - C_{17} \\ - C_{19} \end{array}$	
75	-	-	697	711	695	$vSC(27) C_1 - S_7 + \delta CCC(23) C_2 - C_1$	
76	-	694	697	710	694	γ ONOC(60) O ₄₀ -N ₃₉ -O ₄₁ -C ₂₂ + γ HCCC(29) H ₃₇ -C ₂₃ -C ₂₂ -C ₅₂ H ₃₇ -C ₂₃ -C ₂₂ out of H (D)	
77	-	685	_	705	689	τ CCCC(78) C ₁ -C ₂ -C ₃ -C ₄ ,C ₅ -C ₆ -C ₁ -C ₂ ,C ₁₀ -C ₁₁ -C ₁₂ -C ₁₃ ,C ₁₀ -C ₁₅ -C ₁₄ -C ₅ -C ₆ (C)	
78	-	667	678	685	670	$vSC(26) S_7 - C_8 + \delta NCC(17) N_9 - C_8$	
79	-	658	_	675	660	$-C_{10}$ $\gamma ONCC(59) O_{18}-N_{16}-C_{17}$ $-C_{19} + \tau CCCC(30) C_{17}-C_{19}-C_{20}$	
80	-	631	644	647	633	$-C_{21,17}-L_{19}-C_{24}-C_{23} (D)$ $\delta CCN(51) C_{12}-C_{13}-N_{16},C_{3}-C_{2}$ $-N_{9} + \delta CCC(17) C_{4}-C_{5}-C_{6},C_{11}-C_{12}$ $-C_{12} + \delta CCC(17) C_{4}-C_{5}-C_{6},C_{11}-C_{12}$	
81	-	_	620	643	629	$\delta CCC(72) C_{19} - C_{24} - C_{23}, C_{19} - C_{20} - C_{21}$	
82	_	622	620	640	626	(D) $\delta CCC(71) C_{11} - C_{12} - C_{13}, C_{10} - C_{15} - C_{14}$	
83	_	559	_	575	562	(C) γHNCC(66) H ₃₄ –N ₁₆ –C ₁₃ –C ₁₂ out	
84	_	550	552	567	555	of N γHNCC(37) H ₃₄ –N ₁₆ –C ₁₃ –C ₁₂ out	
85	-	532	534	542	530	or in $\tau CCCC(79) C_3 - C_4 - C_5 - C_6, C_1 - C_6 - C_5$ $-C_4 (A) + \gamma CCCN(10) C_6 - C_1 - C_2 - N_9$	
86	-	523	534	541	529	(B) γ HNCC(32) H ₃₄ -N ₁₆ -C ₁₃ -C ₁₂ out of N + δ CCN(51) CCN	
87	-	514	503	517	506	$\begin{array}{l} \delta CNO(41) \ C_{22} - N_{29} - C_{22} - N_{39} \\ \delta CNO(41) \ C_{22} - N_{39} - O_{40}, C_{22} - N_{39} \\ - O_{41} + \delta CCO(14) \ O_{18} - C_{17} \\ - C_{19} + \delta CCN(10) \ C_{21} - C_{22} - N_{39} \end{array}$	

Table 6 (continued)

	Raman		Infrared	Infrared		
No.	Exp. ^a	Calc. ^a	Exp.	Calc.		PED (%) ^{c,d}
				Unscld. ^a	Scld. ^b	
88	_	496	_	505	494	γHCCC(75) H_{30} - C_{11} - C_{10} - C_{15} out of H (C) +τCCCS(10) S ₇ - C_8 - C_{10} - C_{15}
89	-	487	483	498	487	(C) δ CSC(57) C ₁ -S ₇ -C ₈ (B) + δ SCN(12) S ₇ -C ₈ -N ₉ (B)
90	-	451	459	461	451	γ HCCC(20) H ₃₆ -C ₂₁ -C ₂₂ -C ₂₃ ,H ₃₈ -C ₂₄ -C ₂₂ -C ₂₃ out of H (D)
91	-	424	422	431	422	δ SCC(18) S ₇ C ₈ C ₁₀ + δ CNC(12) C ₁₃ -N ₁₆ -C ₁₇ + δ NCC(10) N ₉ -C ₉ -C ₁₀
92	411	415	411	425	416	$\tau CCCC(44) C_3 - C_2 - C_1 - C_6, C_4 - C_3 - C_2 - C_1 (A)$
93	411	406	411	421	412	$\tau CCCC(92) C_{22} - C_{21} - C_{20} - C_{19} C_{22} - C_{23} - C_{24} - C_{19} (D)$
94	411	-	411	417	408	$\tau CCCC(32) C_{10} - C_{11} - C_{12} - C_{18} C_{10}$
95	_	397	_	404	395	$\delta_{13} = \delta_{14} = \delta_{19} = \delta$
96	-	379	-	389	380	γ SCNC(52) S7-C ₁₀ -N ₉ -C ₆ $\pm \tau$ CCNC(11) C ₁₂ -C ₁₂ -N ₁₆ -C ₁₇
97	-	361	-	370	362	$\frac{-c_8 + iccr(11) c_{12} - c_{13} - N_{16} - c_{17}}{\delta CCN(33) c_{14} - c_{13} - N_{16} + \delta NCO(33)}$
98	-	316	-	319	312	$\delta CNC(37) C_{13} - N_{16} - C_{17} + \delta CCC(14)$
99	_	298	_	305	298	$\tau NCCC(50) N_9 - C_8 - C_{10} - C_{15}$
100	-	280	-	289	283	τ CNCC(10) C ₁₃ -N ₁₆ -C ₁₇ -C ₁₉ + δ CCN(10) C ₂₃ -C ₂₂ -N ₂₉ + δ CCC(10) C ₁₇ -C ₁₉ -C ₂₉
101	_	271	_	275	269	τ HNCC(48) H ₂₉ -N ₉ -C ₂ -C ₁
102	-	262	-	269	263	τHNCC(21) H ₂₉ -N ₉ -C ₈ -C ₁₀
103	_	244	_	249	244	τ CCCC(35) C ₁ -C ₆ -C ₅ -C ₄ + τ HNCC(16) H ₂₉ -N ₉ -C ₈ -C ₁₀ + τ CNCC(11) C ₁₃ -N ₁₆ -C ₁₇ -C ₁ -
104	-	226	-	234	229	$-C_{19}$ $\tau CCCN(56) C_4 - C_3 - C_2$ $-N_2 + \gamma SCNC(13) S_7 - C_{10} - N_2 - C_2$
105	_	181	_	189	185	$\delta CCN(55) C_{21}-C_{22}-N_{39} + \delta CCC(15)$ $C_{17}-C_{19}-N_{20} + \delta CCN(13) C_{14}-C_{13}$ $N_{14} + \delta CCN(13) N_{14} - C_{13}$
106	_	172	-	176	172	$\tau_{16} + \sigma_{16} + \sigma$
107	_	136	_	136	133	$\tau CCNC(34) C_{14} - C_{13} - N_{16} - C_{17}$
108	_	127	-	133	130	$ \begin{aligned} &\delta \text{CNC}(11) \text{C}_{13} - \text{N}_{16} - \text{C}_{17} + \tau \text{CCNC}(10) \\ &\text{C}_{14} - \text{C}_{13} - \text{N}_{16} - \text{C}_{17} \end{aligned} $
109	-	91	_	92	90	τ CCCN(43) N ₁₆ -C ₁₇ -C ₁₉ -C ₂₄ + τ CNCC(26) C ₂ -N ₉ -C ₈ -C ₁₀
110	_	82	-	81	79	$\tau OCCC(49) O_{18} - C_{17} - C_{19} - C_{24} + \gamma CCNC(11) C_{12} - C_{13} - N_{16} - C_{17}$
111	-	64	-	71	69	γ CNCC(13) C ₁₃ -N ₁₆ -C ₁₇ -C ₁₀ + δ CNC(13) C ₁₃ -N ₁₆ -C ₁₇
112	-	55	-	56	55	$\tau CCNO(78) C_{21} - C_{22} - N_{39} - O_{40}, C_{21} - C_{23} - N_{20} - O_{41}$
113	-	46	-	41	40	$\tau CNCC(53) C_{12} - C_{13} - N_{16} - C_{17}, C_{14} - C_{12} - N_{16} - C_{17}, C_{14}$
114	-	37	-	38	37	$\tau CNCC(34) C_2 - N_9 - C_8 - C_{10}, C_{13} - N_{16}$
115	_	28	-	30	29	$\begin{array}{c} c_{17} c_{19} + 6CR(12) c_{2} + Rg c_{8} \\ \delta CNC(22) c_{13} - N_{16} - C_{17} + \tau CNCC(15) \\ c_{2} - N_{9} - C_{8} - C_{10} + \tau CCNC(13) c_{14} \\ c_{17} - N_{16} - C_{17} + \tau CNC(13) c_{14} \end{array}$
116	-	19	-	21	21	$-C_{13} - N_{16} - C_{17}$ $\tau CCNC(61) C_{14} - C_{13} - N_{16}$ $-C_{17} + \tau CNCC(16) C_{20} - N_{20} - C_{10} - C_{10}$
117	_	10	_	12	12	$\tau CNCC(34) C_{13} - N_{16} - C_{17}$ - $C_{19} + \tau CCNC(21) C_2 - N_9 - C_8$ - $C_{10} + \tau CCNC(21) C_2 - N_9 - C_8$
 ^a Exp.:Exper ^b All calculat ^c PED (Poter ^d Letters in p 	imental, Calc.:Calcula ted IR wavenumbers ntial Energy Distribut parentheses stand for	ated, Unscld:Unscaled were scaled with 0.9 ion) values lower tha the rings, i.e. (A) for	, Scld.:Scaled. 780. n 10% were not includ ring A.	led.		

Fig. 7. The experimental and calculated IR spectra of BSN-009 (1).

Fig. 8. The experimental and calculated IR spectra of BSN-011 (1).

Fig. 9. The experimental and calculated Raman spectra of BSN-009 (1).

Fig. 10. The experimental and calculated Raman spectra of BSN-011 (1).

3.2.1.4. N=O stretching modes. The stretching vibrations of nitro (-NO₂) group (ν N = O) were reported within the range of 1580-1345 cm⁻¹ in substituted nitrobenzenes [72]. The bands calculated at 1533 (observed at 1535 cm⁻¹) and 1318 cm⁻¹ (observed at 1312 cm⁻¹) in IR spectrum of BSN-011 were attributed to the N=O stretching modes (Table 6). Since BSN-011 does not have any nitro moiety, no IR mode was observed. In addition, Raman spectrum of BSN-011 did not exhibit any Raman active nitro group stretching mode.

3.2.1.5. C-N and C=N stretching modes. The C-N stretching vibrations were calculated in the range of 1524-809 cm⁻¹ for both compounds with decreasing wavenumber order; vC₈-N₉>vC₂- $N_9 > vC_{13} - N_{16} > vC_{17} - N_{16}$ (coupled with CC stretching, CCH and CNH in-plane bending and the other modes). While the most dominant C–N stretching mode (C_{17} – N_{16}) was observed at 1226 cm⁻¹ in IR spectrum (1228 cm⁻¹ in experimental Raman) of BSN-009 (PED: 31%) and these modes were coupled with some CCH in plane bending vibrations (see 3.2.2. section) even by contribution values between 10 and 16% (mode numbers 27, 33, 39, 47 and 50 in Table 5), they were also added as contribution to this stretching mode and presented here. IR active C=N stretching modes for BSN-009 were observed at 1515, 1456, 1353, 1244, 1226 and 1180 cm⁻¹. In Raman spectrum of BSN-009, only Raman active modes for this stretching mode were at 1525, 1249 and 1183 cm⁻¹. In addition, from the calculated Raman spectra for BSN-009, we could determine these bands at 1513 and 1189 cm⁻¹. In contrast, for BSN-011. this stretching mode was not active in its Raman spectrum. Moreover, only the most dominant N–C stretching mode represents the bond which links the ring C to ring D $(N_{16}-C_{17})$ was not observed in any experimental vibrational spectra, but calculated at 1090 and 1091 cm^{-1} (PED: 53% and number of the mode is 59 in Table 5) in theoretical Raman and IR spectra for BSN-009. This mode was also coupled with CC stretching observed at 1226 cm⁻¹ (experimental IR, mode number is 50 with PED of 13%) and δ NCO (in-plane NCO bending) calculated at 884 cm⁻¹ (IR, mode number is 74 with PED of 10%). As for BSN-011, stretching mode $(N_{16}-C_{17})$ was coupled with various stretching $(C_{17}-C_{19}$ calculated at 1212 cm⁻¹ (IR) and N_{39} -C₂₂ calculated at 1091 cm⁻¹ (IR) with corresponding mode numbers 41 and 49, respectively) and bending modes ($C_{20}C_{21}C_{22}$ observed at 1073 cm⁻¹ in IR spectrum (mode number 50). C=N (C_8N_9) stretching mode for BSN-011 was observed at 1520 cm⁻¹ in IR spectrum (not Raman active, ca. Ra at 1522 cm⁻¹). Arjunan et al. [50] observed the C=N stretching mode at 1513 cm⁻¹ (IR), 1516 cm⁻¹ (Raman) and calculated at 1523 cm⁻¹ for 2-benzothiazole acetonitrile. In this study, corresponding band is observed at 1515 cm^{-1} (IR), 1525 cm^{-1} (Raman) and calculated at 1524 cm⁻¹ for BSN-009; at 1520 cm⁻¹ (IR), (no Raman band) and calculated at 1524 cm⁻¹ for BSN-011. These results are in consistent with our observations.

3.2.1.6. C-S stretching modes. The bands observed at 1117, 1053, 937 and 698 cm⁻¹ in experimental IR for BSN-009 and 1112, 944, 697 and 678 cm⁻¹ in IR for BSN-011 were assigned to C–S stretching vibrations. On the other hand, one of these modes was coupled with a CCH in-plane bending mode (PED: 41% with mode number 57). These vibrational modes were calculated at 1119, 1051, 939, 694 and 667 cm⁻¹ for BSN-009 and 1121, 1051, 942, 695 and 670 cm⁻¹ for BSN-011. None of these stretching modes were calculated at 937, 694 for BSN-009 and 1117, 1054, 944 and 678 cm⁻¹ for BSN-011.

3.2.2. Bending (in-plane and out-of-plane) and torsional modes 3.2.2.1. Aromatic CCH in-plane bending modes. CCH in plane

bending vibrations (δ CCH) for BSN-009 and BSN-011 within A, C and D ring were observed in 1503-1053 cm⁻¹ and 1488-1102 cm⁻¹ regions in IR spectra, respectively. For BSN-009, corresponding calculated wavenumbers for these related bending modes in theoretical Raman spectra were at 1504 (observed at 1498 cm⁻¹ in experimental (exp.) Raman (Ra) spectrum), 1477, 1378, 1342, 1315 (1314 cm⁻¹, exp. Ra), 1306, 1243 (observed at 1241 cm⁻¹ in exp. Ra), 1189 (1183 cm⁻¹ exp. Ra.), 1180, 1126 (observed at 1123 cm⁻¹ exp. Ra.) and 1054 cm⁻¹. In addition, CCH in plane bending vibrations in theoretical Raman spectrum for BSN-011 were also calculated at 1486, 1432, 1306, 1297, 1198, 1162, 1153, 1126, 1117 and 1108 cm⁻¹. However, no experimental Raman active bands were observed for BSN-011.

3.2.2.2. Aliphatic HCH and CCH in-plane bending modes. The ethyl group HCH modes of BSN-009 appeared in the region of 1479-1053 cm⁻¹ in IR spectrum and were calculated in the range of 1475-1044 cm⁻¹. The wavenumbers observed at 1377-1053 cm⁻¹ were assigned to CCH in-plane bending modes and they were calculated between 1379 and 1044 cm⁻¹. The only Raman active HCH bending mode was observed at 1454 cm⁻¹ for BSN-009. Since there is no HCH angle for BSN-011, not any vibrational mode was observed for this compound.

3.2.2.3. CCC in-plane bending modes of the rings. The bands appeared at 1018, 1012, 987, 855, 630, 623 and 597 cm⁻¹ in IR and 1015, 985, 841 and 629 cm⁻¹ in Raman spectrum for BSN-009 and the bands at 1073, 1014, 991, 853 and 620 cm⁻¹ for BSN-011 were attributed to CCC in plane bending vibrations (δ CCC). No Raman vibrational mode was observed for BSN-011.

3.2.2.4. HNC in-plane bending modes. The HNC in plane bending vibrations (δ HNC) were calculated in 1591-1123 cm⁻¹ region and were observed experimentally in the region of 1588-1130 cm⁻¹. These modes were experimentally observed at 1558, 1479, 1353 and 1244 cm⁻¹ for IR and only observed at 1483 and 1249 cm⁻¹ for Raman, respectively.

3.2.2.5. CSC and SCN in-plane bending modes. The in-plane bending vibration of CSC for BSN-009 was observed at 469 cm⁻¹ (IR), 468 cm⁻¹ (Raman) and calculated at 486 cm⁻¹ (52% contribution of PED) and the same mode for BSN-011 was observed at 483 cm⁻¹ (IR) and calculated at 487 cm⁻¹ (PED: 57%). These modes are coupled with SCN in plane bending modes.

3.2.2.6. Out-of-plane bending and torsional modes. Since the rest of the compounds have the same geometry (Fig. 1), the most important out-of-plane bending (γ) and torsional modes (τ) are the ones which related to functional groups attached to two ends of both compounds (C₂H₅ for BSN-009 and NO₂ for BSN-011). These modes are related to the C₂₂, C₃₉, H₄₀, H₄₁, C₄₂, H₄₃, H₄₄ and H₄₅ atoms for BSN-011 and C₂₂, N₃₉, O₄₀ and O₄₁ atoms for BSN-011, respectively. yHCCC out-of-bending modes were observed in IR spectrum for BSN-009 at 947, 897 (901 cm^{-1} , calculated Raman) and 822 cm^{-1} (observed at 823 cm^{-1} in Raman spectrum) for the ring A (mode numbers: 70 and 73). In IR and Raman spectra (hereafter, Ra) of BSN-009, these modes were observed at 966 cm^{-1} (967 cm^{-1} , Ra), 947 cm⁻¹, 855 cm⁻¹ (841 cm⁻¹, Ra) and 839 cm⁻¹ for ring D. The wavenumbers assigned to these same modes were observed at 947 cm⁻¹, 897 cm⁻¹ (902 cm⁻¹, Ra), 770 cm⁻¹ (771 cm⁻¹) and 481 cm⁻¹ for ring C in BSN-009. For BSN-011, γ ONOC (O40N39O41C22) mode was observed at 697 in experimental IR spectrum (calculated at 694 with PED value of 60%) and calculated at 694 in Raman spectrum.

Torsional modes (τ HCCC) that represent the end functional

Fig. 11. DSC curves for BSN-009 and BSN-011.

group (ring D) of BSN-009 were only calculated at 332 cm⁻¹ (334 cm⁻¹, calculated Ra), 225 cm⁻¹ (226 cm⁻¹, calculated Ra) and 203 cm⁻¹ (208 cm⁻¹, calculated Ra and 203 cm⁻¹ observed Ra). As well as BSN-009, only torsional mode (τ CCNO) for the NO₂ moiety of BSN-011 was only calculated at 55 cm⁻¹ (55 cm⁻¹, calculated Ra).

3.3. DSC studies

DSC was used to get information about the thermal behavior and physicochemical properties of two potential antibacterial agents, BSN-009 and BSN-011. DSC curves of BSN-009 and BSN-011 were shown in Fig. 11. Two sharp endothermic peaks were observed at 234.56 and 239.87 °C corresponding to the melting of BSN-009 with the enthalpy (Δ H) value of 100.3 J/g, whereas only a single endothermic peak was observed at 294.23 $^\circ$ C with the Δ H value of 76.8 J/g for BSN-011. These melting point data were seen to be in consistency with the data which was previously reported to be between 238 and 240 °C for BSN-009 and 296-298 °C for BSN-011 [29]. Furthermore, an intensive exothermic peak appeared at 411.92 °C due to the thermal decomposition of BSN-011, while the thermal decomposition of BSN-009 was observed in the temperature range of 350–500 °C with the peak temperature of 420 °C. The purity of both compounds was also determined by DSC and the degrees of purities for BSN-009 and BSN-011 were found to be 95 and 94 mol%, respectively.

4. Discussion

It was previously shown that there is a strong connection between MIC values and antibacterial and antifungal activities of BSN-009 and BSN-011 with certain control drugs and it was revealed that both compounds are good potential compounds against *C. albicans*, but not better as antifungal agents. In contrast to BSN- 009 showed better antibacterial activity against both S. aureus isolate (s.a.i.) (MIC: 6.25 µg/ml) and Klebsiella pneumoniae (k.p.) RSKK 574 (MIC: 25 µg/ml), BSN-011 (MIC: 12.5 µg/ml for s.a. and 50 μ g/ml for *k.p.*) showed less antibacterial activity than BSN-009 [27]. On the other hand, our results showed that BSN-011 did not have any violation to Lipinski's rule of five, but BSN-009 violated this rule by the partition coefficient of 5.42 (which should be < 5) (Table 4). Furthermore, bioactivity scores for both compounds given in Table 4 and it was suggested that BSN-009 acts as a GPCR ligand, good nuclear receptor ligand and enzyme inhibitor since a bioactivity score between -0.5 and 0 means it is moderately active. However, even this result indicated that BSN-009 compound can be treated as a potential candidate for bioactive application compared to BSN-011, it still violates Lipinski's rule of five thus, we can eliminate this option. Since BSN-011 does not violate rule of five and still bioactivity scores are between -0.5 and 0, it can be regarded as a potential candidate for bioactive application instead of BSN-009.

By considering the molecular geometry is in the gas phase in our calculations, it must be emphasized that the geometry of these compounds might be in different forms than their solid state. On the other hand, it is also possible to isolate compounds by matrix isolation IR spectroscopic technique in an inert gas environment (helium, xenon, argon etc.) and better evaluate this gas phase computation [36]. In order to confirm this, complementary spectroscopic and structural investigation techniques should be conducted in a systematic way anytime. One of the main advantages of quantum chemistry calculations is that, because of its highly accurate prediction of structure and vibrational wavenumbers, it is a very powerful tool to detect subtle structural and vibrational changes, helped by results of calculated spectra for the investigated compound in gas phase and vacuo. Regarding our quantum chemistry results, we can say that there is a reasonably good

agreement between calculated and experimental vibrational wavenumbers. After conformational analysis performed on molecular structures of BSN-009 and BSN-011, six stable conformers for BSN-009 and four stable conformers for BSN-011 were obtained. Dipole moments of the six conformers of BSN-009 vary from 1.77 D (conformer 1) to 6.19 D (conformer 5), whereas from 7.30 D (conformer 3) to 9.98 D (conformer 2) for the four conformers of BSN-011. The HOMO of both compounds is located around benzothiazole moiety (mostly S atom), phenyl and amide parts, whereas the LUMO around the entire compounds (except ethyl group for BSN-009; mostly nitrobenzene part for BSN-011). According to the plots depict the MEP surfaces of BSN-009 (1) and BSN-011 (1), the electropositive regions are located over the N-H groups while the electronegative regions are located over the oxygen atoms and these regions can be considered as the sites for nucleophilic and electrophilic attacks, respectively.

C₃, S₇, C₁₃, C₁₅, C₂₁, C₂₃, C₂₄ and C₄₂ atoms for BSN-009 and C₃, S₇, C₁₃, C₁₅ and C₂₂ atoms for BSN-011 exhibit huge negative charge, which are donor atoms. C₁, C₁₀, C₁₉ and C₂₂ atoms for BSN-009 and C₁, C₁₀ and C₁₉ atoms for BSN-011 exhibit huge positive charges which are acceptor atoms. While C₃ atom (-0.657) has the highest negative Mulliken atomic charge in BSN-009 compound, this atom has the highest negative value (-0.591) after C₂₂ atom (-0.624) where NO₂ group is bound in BSN-009 and C₁₀ (1.051) atom for BSN-011 have higher Mulliken atomic charges than other positive atoms.

By Raman and IR studies we performed in this study, corresponding wavenumbers of the most important portions of these compounds were successfully observed in IR and Raman spectra and theoretically were calculated for the first time. Thus, in near future, our results would shed light on to experimental and modelled spectra of new derivatives and their functions and be helpful in order to better understand their action mechanism as drug candidates as well as their potential bioactive applications. In general, spectroscopically we showed the differences of both compounds and revealed that specific functional groups play different activity which was confirmed by their vibrational spectra and drug likeliness and bioactivity scores.

Since drug polymorphism is related to the different crystallographic structures and polymorphic transitions, any thermal change that occurs during heating by DSC play an important role in understanding crystallographic state and possible polymorphic transitions of the compound under study. Detailed information on interconversion of various polymorphs of candidate drugs is required because the action of the drug depends on its form [47]. In our study, we did not encounter any polymorphic transition neither for BSN-009 nor for BSN-011, but determined their melting points, decomposition and purity features successfully. Additionally, like drug polymorphism, drug purity is of importance since it is not desired to have any impurities in a drug because it will cause unexpected interactions with drug and thus causes improper functions that is not expected. Drug purities were very well discussed previously for 115 drugs [73] by using DSC and a thorough review with a discussion of advantages of this method was also published [74]. Grady et al. [73] showed that DSC technique is of great value in drug purity evaluation. It is known that peak integration, according to the van't Hoff relationship, and T_m values are used to test the impurities that eventually change the melting profile of a drug. However, even though the quantitative measurement of the "exact amount" of impurity of a drug is difficult, DSC is capable of monitoring the contamination and melting nature of drugs [73–75]. Because it is known that there will be a reduction in the melting temperature of a drug due to the impurities, determination of the melting temperature plays a crucial role on purity in drug [58]. DSC study of our studied compounds (Fig. 11) gave more information on these compounds by determining the melting temperatures from observed endothermic peaks and these melting point data were seen to be in consistency with the data which was previously reported to be between 238 and 240 °C for BSN-009 and 296–298 °C for BSN-011 [29]. As an ideal theoretic case, a completely pure crystalline compound should exhibit an infinitely narrow transition peak, whereas increased broadening is an indication of impurity [74]. Purity values of both compounds were also determined as 95 and 94 mol% for BSN-009 and BSN-011 by DSC and even it was suggested [76] that low scanning speed (<5 °C/min, preferably 2 °C/ min) are required to determine the purity, our scanning speed was sufficient enough to determine the purities of compounds.

5. Conclusions

Prior determination of the molecular structure and some physicochemical characteristics of a compound and confirmation its purity are necessary steps in order it to be decided and used as a drug candidate. The most challenging issue in the pharmaceutical industry is the characterization of polymorphs of any drug or drug candidate compound. Thus, any theoretical and experimental efforts to determine the possible polymorphs/conformers of compounds are of importance. Besides, Lipinski's rule of five is used as a helpful tool in prediction of various physicochemical characteristics of the compounds as drug candidates.

Since there are not any detailed structural, spectroscopic and calorimetric data on BSN-009 and BSN-011, we performed IR, Raman, DSC and quantum chemical studies together for the first time. Our work also showed that DSC was very effective in determining the thermal behavior of BSN-009 and BSN-011. We believe that our study will pave the way to provide some predictions to design further antimicrobial/antibacterial compounds by complementary techniques as discussed and used in this work. In order to further elucidate the link between the molecular geometry and antimicrobial effects, it is obvious that new unique antimicrobial active compounds should be synthesized and compared according to their molecular structures and spectroscopic features. As a first approximation, it can be speculated that drug likeliness and bioactivity scores of BSN-011 were confirmed and this compound would be evaluated as a good drug candidate.

Author contributions

Ozan Unsalan: Writing the original manuscript, review and editing. **Hatice Ari:** Theoretical calculations of the compounds, performing IR and Raman experiments, analysis of the results, preparation of tables and figures, review and editing of the paper together with Ozan Unsalan. **Cisem Altunayar-Unsalan:** Performing DSC experiments and analyses, writing DSC and IR sections, reviewing the paper. **Mustafa Boyukata:** Reviewing and editing paper, **Kayhan Bolelli:** Synthesis of the compounds, discussion of the results, writing related parts of the introduction. **Ismail Yalcin:** Synthesis of the compounds and reviewing of the paper.

Declaration of Competing interest

All authors declare that there are no conflicts of interest to declare.

Acknowledgements

All calculations of the present study were performed at TUBITAK ULAKBIM High Performance and Grid Computing Center (TR-Grid e-Infrastructure).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.molstruc.2020.128454.

References

- R.M. Acheson, An Introduction to the Chemistry of Heterocyclic Compounds, Interscience Publishers Inc., New York, 1960.
- [2] R. Kharb, P.C. Sharma, M.S. Yar, Pharmacological significance of triazole scaffold, J. Enzym. Inhib. Med. Ch. 26 (2011) 1–21.
- [3] S. Gupta, N. Ajmera, N. Gautam, R. Sharma, D.C. Gautam, Novel synthesis and biological activity study of pyrimido[2,1-b]benzothiazoles, Indian J. Chem. B. 48 (2009) 853–857.
- [4] H. Kucukbay, B. Durmaz, Antifungal activity of organic and organometallic derivatives of benzimidazole and benzothiazole, Arzneimittel-Forsch. 47 (1997) 667–670.
- [5] R.M. Kumbhare, V.N. Ingle, Synthesis of novel benzothiozole and benzisoxazole functionalized unsymmetrical alkanes and study of their antimicrobial activity, Indian J. Chem. B. 48 (2009) 996–1000.
- [6] M.A. Mahran, S. William, F. Ramzy, A.M. Sembel, Synthesis and in vitro evaluation of new benzothiazole derivatives as schistosomicidal agents, Molecules 12 (2007) 622–633.
- [7] B. Rajeeva, N. Srinivasulu, S.M. Shantakumar, Synthesis and antimicrobial activity of some new 2-substituted benzothiazole derivatives, Eur. J. Chem. 6 (2009) 775–779.
- [8] G. Trapani, A. Latrofa, M. Franco, D. Armenise, F. Morlacchi, G. Liso, 3-Dihydro-1,3-Benzothiazoles, Arzneimittel-Forsch vols. 44–2 (1994) 969–971. Synthesis and Antimicrobial Activity of Some N-Alkenyl-2-Acylalkylidene-2.
- [9] I. Yalcin, I. Oren, E. Sener, A. Akin, N. Ucarturk, The synthesis and the structure-activity-relationships of some substituted benzoxazoles, Oxazolo(4,5-B)Pyridines, benzothiazoles and Benzimidazoles as antimicrobial agents, Eur. J. Med. Chem. 27 (1992) 401–406.
- [10] I. Yildiz-Oren, I. Yalcin, E. Aki-Sener, N. Ucarturk, Synthesis and structureactivity relationships of new antimicrobial active multi substituted benzazole derivatives, Eur. J. Med. Chem. 39 (2004) 291–298.
- [11] P.H. Kalina, D.J. Shetlar, R.A. Lewis, LJ. Kullerstrand, R.F. Brubaker, 6-Amino-2-Benzothiazole-Sulfonamide - the effect of a topical carbonic-anhydrase inhibitor on Aqueous-Humor formation in the normal human-Eye, Ophthalmology 95 (1988) 772–777.
- [12] M.S. Chua, D.F. Shi, S. Wrigley, T.D. Bradshaw, I. Hutchinson, P.N. Shaw, D.A. Barrett, L.A. Stanley, M.F.G. Stevens, Antitumor benzothiazoles. 7. Synthesis of 2-(4-acylaminophenyl)benzothiazoles and investigations into the role of acetylation in the antitumor activities of the parent amines, J. Med. Chem. 42 (1999) 381–392.
- [13] I. Hutchinson, M.S. Chua, H.L. Browne, V. Trapani, T.D. Bradshaw, A.D. Westwell, M.F.G. Stevens, Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzothiazoles, J. Med. Chem. 44 (2001) 1446–1455.
- [14] I. Hutchinson, S.A. Jennings, B.R. Vishnuvajjala, A.D. Westwell, M.F.G. Stevens, Antitumor benzothiazoles. 16. Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl)benzothiazole amino acid prodrugs, J. Med. Chem. 45 (2002) 744–747.
- [15] S. Kini, S.P. Swain, A.M. Gandhi, Synthesis and evaluation of novel benzothiazole derivatives against human cervical cancer cell lines, Indian J. of Pharmaceutical Sci. 69 (2007) 46–50.
- [16] S.H.L. Kok, R. Gambari, C.H. Chui, C.W.M. Yuen, E. Lin, R.S.M. Wong, F.Y. Lau, G.Y.M. Cheng, W.S. Lam, S.H. Chan, K.H. Lam, C.H. Cheng, P.B.S. Lai, M.W.Y. Yu, F. Cheung, J.C.O. Tang, A.S.C. Chan, Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines, Bioorgan. Med. Chem. 16 (2008) 3626–3631.
- [17] A. Pinar, P. Yurdakul, I. Yildiz, O. Temiz-Arpaci, N.L. Acan, E. Aki-Sener, I. Yalcin, Some fused heterocyclic compounds as eukaryotic topoisomerase II inhibitors, Biochem. Bioph. Res. Co 317 (2004) 670–674.
- [18] D.F. Shi, T.D. Bradshaw, S. Wrigley, C.J. McCall, P. Lelieveld, I. Fichtner, M.F.G. Stevens, Antitumor benzothiazoles .3. Synthesis of 2-(4-aminophenyl) benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo, J. Med. Chem. 39 (1996) 3375–3384.
- [19] B. Tekiner-Gulbas, O. Temiz-Arpaci, I. Yildiz, E. Aki-Sener, I. Yalcin, 3D-QSAR study on heterocyclic topoisomerase II inhibitors using CoMSIA, Sar Qsar, Environ. Res. 17 (2006) 121–132.
- [20] O. Temiz-Arpaci, B. Tekiner-Gulbas, I. Yildiz, E. Aki-Sener, I. Yalcin, 3D-QSAR analysis on benzazole derivatives as eukaryotic topoisomerase II inhibitors by using comparative molecular field analysis method, Bioorgan. Med. Chem. 13 (2005) 6354–6359.
- [21] M. Wang, M.Z. Gao, B.H. Mock, K.D. Miller, G.W. Sledge, G.D. Hutchins, Q.H. Zheng, Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents, Bioorgan. Med. Chem. 14 (2006) 8599–8607.
- [22] G.M. Sreenivasa, E. Jayachandran, J. Raja Kumar, M.M.J. Vijay Kumar, Synthesis of Bioactive molecule fluoro benzothiazole comprising potent heterocyclic moieties for Anthelmintic activity, Archives of Pharmacal. Res. 1 (2009) 150–157.

- [23] R. Paramashivappa, P.P. Kumar, P.V.S. Rao, A.S. Rao, Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors, Bioorg. Med. Chem. Lett 13 (2003) 657–660.
- [24] L. Katz, Antituberculous compounds. III. Benzothiazole and Bezoxazole derivatives, Journal of the Am. Chem. Soc. 75 (1953) 712–714.
- [25] J. Koci, V. Klimesova, K. Waisser, J. Kaustova, H.M. Dahse, U. Mollmann, Heterocyclic benzazole derivatives with antimycobacterial in vitro activity, Bioorg. Med. Chem. Lett 12 (2002) 3275–3278.
- [26] S.R. Pattan, C. Suresh, V.D. Pujar, V.V.K. Reddy, V.P. Rasal, B.C. Koti, Synthesis and antidiabetic activity of 2-amino[5 '(4-sulphonylbenzylidine)-2,4thiazolidinedione]-7-chloro-6-fluorobenzothiazole, Indian J. Chem. B. 44 (2005) 2404–2408.
- [27] K. Bolelli, I. Yalcin, T. Ertan-Bolelli, S. Ozgen, F. Kaynak-Onurdag, I. Yildiz, E. Aki, Synthesis of novel 2-[4-(4-substitutedbenzamido/phenylacetamido) phenyl]benzothiazoles as antimicrobial agents, Med. Chem. Res. 21 (2012) 3818–3825.
- [28] I. Yalcin, B.K. Kaymakcioglu, I. Oren, E. Sener, O. Temiz, A. Akin, N. Altanlar, Synthesis and microbiological activity of some novel N-(2-hydroxyl-5substitutedphenyl)benzacetamides, phenoxyacetamides and thiophenoxyacetamides as the possible metabolites of antimicrobial active benzoxazoles, Farmaco 52 (1997) 685–689.
- [29] S. Yilmaz, I. Yalcin, F. Kaynak-Onurdag, S. Ozgen, I. Yildiz, E. Aki, Synthesis and in vitro antimicrobial activity of novel 2-(4-(Substituted-carboxamido)benzyl/ phenyl)benzothiazoles, Croat. Chem. Acta 86 (2013) 223–231.
- [30] F. Billes, H. Pataki, O. Unsalan, H. Mikosch, B. Vajna, G. Marosi, Solvent effect on the vibrational spectra of Carvedilol, Spectrochim. Acta A. 95 (2012) 148–164.
- [31] Y. Erdogdu, O. Dereli, D. Sajan, L. Joseph, O. Unsalan, M.T. Gulluoglu, Vibrational (FT-IR and FT-Raman) spectral investigations of 7-aminoflavone with density functional theoretical simulations, Mol. Simulat. 38 (2012) 315–325.
- [32] Y. Erdogdu, O. Unsalan, M. Amalanathan, I.H. Joe, Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone, J. Mol. Struct. 980 (2010) 24–30.
- [33] Y. Erdogdu, O. Unsalan, M.T. Gulluoglu, Ft-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6, 8-dibromoflavone, J. Raman. Spec. 41 (2010) 820–828.
- [34] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations, Spectrochim. Acta 76 (2010) 130–136.
- [35] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin, J. Raman Spec. 40 (2009) 562–570.
- [36] O. Unsalan, N. Kus, S. Jarmelo, R. Faust, Trans- and cis-stilbene isolated in cryogenic argon and xenon matrices, Spectrochim. Acta A. 136 (2015) 81–94.
- [37] O. Unsalan, Y. Sert, H. Ari, A. Simao, A. Yilmaz, M. Boyukata, O. Bolukbasi, K. Bolelli, I. Yalcin, Micro-Raman, Mid-IR, Far-IR and DFT studies on 2-[4-(4-Fluorobenzamido)phenyl]benzothiazole, Spectrochim. Acta 125 (2014) 414–421.
- [38] O. Unsalan, B. Szolnoki, A. Toldy, G. Marosi, FT-IR spectral, DFT studies and detailed vibrational assignment on N,N ',N "-tris(2-aminoethyl)-phosphoric acid triamide, Spectrochim. Acta A. 98 (2012) 110–115.
- [39] O. Unsalan, A. Tutar, C.S. Unlu, R. Erenler, FTIR spectroscopic and quantumchemical studies on some tribromoindenes and their isomers, Opt. Spectrosc. 111 (2011) 894–903.
- [40] M. Govindarajan, A.S. Abdelhameed, A.A. Al-Saadi, M.I. Attia, Experimental and theoretical studies of the vibrational and electronic properties of (2E)-2-[3-(1H-imidazole-1-yl)-1-phenyl-propylidene]-N-phenylhydrazinecarboxamide: an anticonvulsant agent, Appl. Sci-Basel. 5 (2015) 955–972.
- [41] J. Binoy, I.H. Joe, V.S. Jayakumar, O.F. Nielsen, J. Aubard, DFT based relaxed PES scan studies and SERS of anti cancer drug, Combretastatin A-4, Laser Phys. Lett. 2 (2005) 544–550.
- [42] M. Torres, S. Khan, M. Duplanty, H.C. Lozano, T.J. Morris, T. Nguyen, Y.V. Rostovtsev, N.J. DeYonker, N. Mirsaleh-Kohan, Raman and Infrared studies of platinum-based drugs: cisplatin, carboplatin, oxaliplatin, nedaplatin, and heptaplatin, J. Phys. Chem. A. 122 (2018) 6934–6952.
- [43] D.M. Sena, P.T.C. Freire, J. Mendes, F.E.A. Melo, F.M. Pontes, E. Longo, O.P. Ferreira, O.L. Alves, Vibrational and thermal properties of crystalline topiramate, J. Brazil Chem. Soc. 19 (2008) 1607–1613.
- [44] S. Singh, H. Singh, T. Karthick, P. Tandon, D.H. Dethe, R.D. Erande, Conformational study and vibrational spectroscopic (FT-IR and FT-Raman) analysis of an Alkaloid-borreverine derivative, Anal. Sci. 33 (2017) 99–104.
- [45] A. Borrego-Sanchez, E. Carazo, B. Albertini, N. Passerini, B. Perissutti, P. Cerezo, C. Viseras, A. Hernandez-Laguna, C. Aguzzi, C.I. Sainz-Diaz, Conformational polymorphic changes in the crystal structure of the chiral antiparasitic drug praziquantel and interactions with calcium carbonate, Eur. J. Pharm. Biopharm. 132 (2018) 180–191.
- [46] C. Fandaruff, G.S. Rauber, A.M. Araya-Sibaja, R.N. Pereira, C.E.M. de Campos, H.V.A. Rocha, G.A. Monti, T. Malaspina, M.A.S. Silva, S.L. Cuffini, Polymorphism of anti-HIV drug Efavirenz: investigations on thermodynamic and Dissolution properties, Cryst. Growth Des. 14 (2014) 4968–4975.
- [47] M.A.L. Pinto, B. Ambrozini, A.P.G. Ferreira, E.T.G. Cavalheiro, Thermoanalytical studies of carbamazepine: hydration/dehydration, thermal decomposition, and solid phase transitions, Braz. J. Pharm. Sci. 50 (2014) 877–884.

- [48] Ali K. Attia, Mona M. Abdel-Moety, Samar G. Abdel-Hamid, Thermal analysis study of antihypertensive drug doxazosin mesilate, Arabian J. Chem. 10 (2012) 334–338.
- [49] L.F.A. Romani, M.I. Yoshida, E.C.L. Gomes, R.R. Machado, F.F. Rodrigues, M.M. Coelho, M.A. Oliveira, M.B. Freitas-Marques, R.A.S. San Gil, W.N. Mussel, Physicochemical characterization, the Hirshfeld surface, and biological evaluation of two meloxicam compounding pharmacy samples, J. Pharm. Anal. 8 (2018) 103–108.
- [50] V. Arjunan, S.T. Govindaraja, S.P. Jose, S. Mohan, DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile, Spectrochim. Acta 128 (2014) 22–36.
- [51] A.S. Devi, V.V. Aswathy, Y.S. Mary, C.Y. Panicker, S. Armakovic, S.J. Armakovic, R. Ravindran, C. Van Alsenoy, Synthesis, XRD single crystal structure analysis, vibrational spectral analysis, molecular dynamics and molecular docking studies of 2-(3-methoxy-4-hydroxyphenyl) benzothiazole, J. Mol. Struct. 1148 (2017) 282–292.
- [52] E. Koglin, E.G. Witte, R.J. Meier, The vibrational spectra of metabolites of methabenzthiazuron: 2-amino-benzothiazole and 2-(methylamino)benzothiazole, Vib. Spec. 33 (2003) 49–61.
- [53] W. Li, Q.F. Wu, Y. Ye, M.D. Luo, L. Hu, Y.H. Gu, F. Niu, J.M. Hu, Density functional theory and ab initio studies of geometry, electronic structure and vibrational spectra of novel benzothiazole and benzotriazole herbicides, Spectrochim. Acta 60 (2004) 2343–2354.
- [54] U. Pandey, M. Srivastava, R.P. Singh, R.A. Yadav, DFT study of conformational and vibrational characteristics of 2-(2-hydroxyphenyl)benzothiazole molecule, Spectrochim. Acta 129 (2014) 61–73.
- [55] D. Romani, S.A. Brandan, Structural and spectroscopic studies of two 1,3benzothiazole tautomers with potential antimicrobial activity in different media. Prediction of their reactivities, Comput. Theor. Chem. 1061 (2015) 89–99.
- [56] V. Sathyanarayanmoorthi, R. Karunathan, V. Kannappan, Molecular modeling and spectroscopic studies of benzothiazole, J. Chem-Ny, 2013, pp. 1–14.
- [57] R. Sun, J.L. Yao, S.J. Li, R.N. Gu, Raman spectroscopic and density functional theory studies on a benzothiazole-2-thione derivative, Vib. Spectrosc. 47 (2008) 38–43.
- [58] L. Bond, S. Allen, M.C. Davies, C.J. Roberts, A.P. Shivji, S.J.B. Tendler, P.M. Williams, J.X. Zhang, Differential scanning calorimetry and scanning thermal microscopy analysis of pharmaceutical materials, Int. J. Pharmaceut. 243 (2002) 71–82.
- [59] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski,

G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, 2010.

- [60] Roy D. Dennington, Todd A. Keith, J. Millam, GaussView, Version 5, Semichem Inc, Shawnee Mission KS, 2009.
- [61] M.H. Jamroz, Vibrational energy distribution analysis (VEDA): Scopes and limitations, Spectrochim. Acta A. 114 (2013) 220–230.
- [62] E. Kavitha, N. Sundaraganesan, S. Sebastian, M. Kurt, Molecular structure, anharmonic vibrational frequencies and NBO analysis of naphthalene acetic acid by density functional theory calculations, Spectrochim. Acta A. 77 (2010) 612–619.
- [63] T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Phys. Rev. C 1 (1934) 104–113.
- [64] R.S. Mulliken, Electronic Population analysis on LCAO-MO molecular Wave functions. I, J. Chem. Phys. 23 (1955) 1833-1840.
- [65] P. Govindasamy, S. Gunasekaran, Spectroscopic (FT-IR, FT-Raman and UV) investigation, NLO, NBO, molecular orbital and MESP analysis of 2-[2-[(2,6dichlorophenyl)amino]phenyl}acetic acid, Spectrochim. Acta 136 Pt (2015) 1543–1556.
- [66] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv Drug Deliver. Rev. 64 (2012) 4–17.
- [67] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings (Reprinted from Advanced Drug Delivery Reviews, vol 23, pg 3-25, 1997), Adv. Drug Deliver. Rev. 46 (2001) 3–26.
- [68] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliver Rev. 23 (1997) 3–25.
- [69] Molinspiration Cheminformatics, 2020. https://www.molinspiration.com/cgibin/properties.
- [70] N.M. O'Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open Babel: an open chemical toolbox, J. of Cheminformatics. 3 (2011) 33, 2011.
- [71] D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (2002) 2615–2623.
- [72] Noël P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectral of Organic Structures, Wiley, Chichester, 1994, pp. 1–356.
- [73] L.T. Grady, S.E. Hays, R.H. King, H.R. Klein, W.J. Mader, D.K. Wyatt, R.O. Zimmerer Jr., Drug purity profiles, J. Pharm. Sci-Us 62 (1973) 456–464.
- [74] A.A. Vandooren, B.W. Muller, Purity determinations of drugs with Differential scanning calorimetry (Dsc) - a Critical-review, Int. J. Pharmaceut. 20 (1984) 217–233.
- [75] Michael H. Chiu, Elmar J. Prenner, Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions, J. of Pharmacy and Bioallied Sciences 3 (2011) 39–59.
- [76] S.D. Clas, C.R. Dalton, B.C. Hancock, Differential scanning calorimetry: applications in drug development, Pharm. Sci. Technol. To. 2 (1999) 311–320.